Skip to main content
Log in

The New AFRGDB_V2.2 Gravity Database for Africa

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The primary task of the IAG Sub-Commission on Gravity and Geoid in Africa is the development of the vertical reference surface (the geoid) for the entire African continent. For the practical solution of this boundary value problem, the available, arbitrarily distributed boundary data (gravity values) must be interpolated onto a regular grid for numerical reasons. In this paper it is explained in detail how to create this grid from the irregularly distributed point-gravity data. It is worth mentioning that this gravity database is not only used for geoid computation; it is also a stand-alone product used in earth sciences, as it reflects interesting geophysical signals. The gravity data available in this project are land and shipborne point gravity values as well as altimetry-derived gravity anomaly data. One challenge of preparing the homogeneous grid of gravity anomalies is caused by the inhomogeneous distribution of the observations and a lot of data gaps, especially on land. At these data gaps, gravity anomalies are provided on a so-called underlying grid from the GOCE DIR_R5 global reference model. One challenge in the framework of the least-squares prediction technique used is the determination of an empirical covariance function representing the behaviour of the irregularly distributed data points and the individual weights of the land, shipborne, and altimetry data and the underlying grid entering the process. A sophisticated filtering of the available gravity data is carried out to meet this challenge. The preprocessed data from the remove step are predicted to an equiangular \(5^{'} \times 5^{'}\) grid. Finally, a consistent restore step leads to the AFRGDB_V2.2 gravity database. The precision of the developed gravity database has been studied to assess the quality of the new product. The new AFRGDB_V2.2 gravity database is compared to the preceding one (AFRGDB_V2.0), which was generated using the window remove-restore technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abd-Elmotaal, H. A. (1992). Statistical behaviour of the free-air, Bouguer and isostatic anomalies in Austria. Bulletin Géodésique, 66(4), 325–335. https://doi.org/10.1007/BF00807417.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A. (1998). An alternative capable technique for the evaluation of geopotential from spherical harmonic expansions. Bollettino di Geodesia e Scienze Affini, 57(1), 25–38.

    Google Scholar 

  • Abd-Elmotaal, H. A., & Kühtreiber, N. (1999). Improving the geoid accuracy by adapting the reference field. Physics and Chemistry of the Earth, Part A, 24(1), 53–59. https://doi.org/10.1016/S1464-1895(98)00010-6.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A., & Kühtreiber, N. (2003). Geoid determination using adapted reference field, seismic Moho depths and variable density contrast. Journal of Geodesy, 77(1–2), 77–85. https://doi.org/10.1007/s00190-002-0300-7.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A., & Kühtreiber, N. (2014). Automated gross error detection technique applied to the gravity database of Africa. Geophysical Research Abstracts 16, EGU General Assembly 2014:92. https://meetingorganizer.copernicus.org/EGU2014/EGU2014-92.pdf.

  • Abd-Elmotaal, H. A., & Kühtreiber, N. (2016). Effect of the curvature parameter on least-squares prediction within poor data coverage: Case study for Africa. Geophysical Research Abstracts 18, EGU General Assembly 2016:271. https://meetingorganizer.copernicus.org/EGU2016/EGU2016-271.pdf.

  • Abd-Elmotaal, H. A., & Makhloof, A. (2013). Gross-errors detection in the shipborne gravity data set for Africa. Geodetic Week, Essen, Germany, October 8–10, 2013. https://www.frontiers-of-geodetic-science.de/2013/session02/Abd-Elmotaal-Makhloof.pdf.

  • Abd-Elmotaal, H. A., & Makhloof, A. (2014). Combination between altimetry and shipborne gravity data for Africa. In 3rd International Gravity Field Service (IGFS) General Assembly, Shanghai, China, June 30–July 6, 2014.

  • Abd-Elmotaal, H. A., Makhloof, A., Abd-Elbaky, M., & Ashry, M. (2017a). The African \(3^{\prime \prime } \times \,3^{\prime \prime }\) DTM and its validation. International Association of Geodesy Symposia, 148, 79–85. https://doi.org/10.1007/1345_2017_19.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A., Seitz, K., Kühtreiber, N., & Heck, B. (2015). Establishment of the gravity database AFRGDB\(\_\)V1.0 for the African geoid. International Association of Geodesy Symposia, 144, 131–138. https://doi.org/10.1007/1345_2015_51.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A., Seitz, K., Kühtreiber, N., & Heck, B. (2017b). Evaluation of the African gravity database AFRGDB\(\_\)V1.0. International Association of Geodesy Symposia, 148, 87–92. https://doi.org/10.1007/1345_2017_16.

    Article  Google Scholar 

  • Abd-Elmotaal, H. A., Seitz, K., Kühtreiber, N., & Heck, B. (2018). AFRGDB\(\_\)V2.0: the gravity database for the geoid determination in Africa. International Association of Geodesy Symposia, 149, 61–70. https://doi.org/10.1007/1345_2018_29.

    Article  Google Scholar 

  • Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J. M., Marty, J. C., Mulet, S., et al. (2014). ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21), 7508–7514. https://doi.org/10.1002/2014GL062045.

  • Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State University, Department of Geodetic Science and Surveying, Report No. 355.

    Book  Google Scholar 

  • Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J., et al. (2014). EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. 5th GOCE User Workshop, Paris, November 25–28, 2014.

  • Kaban, M. K., El Khrepy, S., & Al-Arifi, N. (2017). Importance of the decompensative correction of the gravity field for study of the upper crust: Application to the Arabian plate and surroundings. Pure and Applied Geophysics, 174, 349–358. https://doi.org/10.1007/s00024-016-1382-0.

    Article  Google Scholar 

  • Kraiger, G. (1988). Influence of the curvature parameter on least-squares prediction. Manuscripta Geodaetica, 13(3), 164–171.

    Google Scholar 

  • Moritz, H. (1976). Covariance functions in least-squares collocation. Ohio State University, Department of Geodetic Science and Surveying, Report No. 240.

    Google Scholar 

  • Moritz, H. (1980). Advanced physical geodesy. Karlsruhe: Wichmann.

    Google Scholar 

  • Sobh, M., Mansi, A. H., Campbell, S., & Ebbing, J. (2019). Regional gravity field model of Egypt based on satellite and terrestrial data. Pure and Applied Geophysics, 176, 767–786. https://doi.org/10.1007/s00024-018-1982-y.

    Article  Google Scholar 

Download references

Acknowledgements

The support by the International Association of Geodesy (IAG) and the International Union of Geodesy and Geophysics (IUGG) is gratefully acknowledged. The authors would like to thank Dr. Sylvain Bonvalot, Director of the Bureau Gravimétrique International (BGI), for providing part of the data set used for Africa. The authors would like to thank the editor of the current paper and two anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. Abd-Elmotaal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elmotaal, H.A., Kühtreiber, N., Seitz, K. et al. The New AFRGDB_V2.2 Gravity Database for Africa. Pure Appl. Geophys. 177, 4365–4375 (2020). https://doi.org/10.1007/s00024-020-02481-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02481-5

Keywords

Navigation