Skip to main content
Log in

Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We investigate level-set percolation of the discrete Gaussian free field on \({\mathbb {Z}}^d\), \(d\ge 3\), in the strongly percolative regime. We consider the event that the level-set of the Gaussian free field below a level \(\alpha \) disconnects the discrete blow-up of a compact set \(A\subseteq {\mathbb {R}}^d\) from the boundary of an enclosing box. We derive asymptotic large deviation upper bounds on the probability that the local averages of the Gaussian free field deviate from a specific multiple of the harmonic potential of A, when disconnection occurs. These bounds, combined with the findings of the recent work by Duminil-Copin, Goswami, Rodriguez and Severo, show that conditionally on disconnection, the Gaussian free field experiences an entropic push-down proportional to the harmonic potential of A. In particular, due to the slow decay of correlations, the disconnection event affects the field on the whole lattice. Furthermore, we provide a certain ‘profile’ description for the field in the presence of disconnection. We show that while on a macroscopic scale the field is pinned around a level proportional to the harmonic potential of A, it locally retains the structure of a Gaussian free field shifted by a constant value. Our proofs rely crucially on the ‘solidification estimates’ developed in Nitzschner and Sznitman (to appear in J Eur Math Soc, arXiv:1706.07229).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  2. Bogachev, V.I.: Measure Theory, vol. 1. Springer Science & Business Media, Berlin (2007)

    Book  Google Scholar 

  3. Bolthausen, E., Deuschel, J.-D.: Critical large deviations for Gaussian fields in the phase transition regime, I. Ann Probab 1876–1920 (1993)

  4. Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 1670–1692 (2001)

  5. Bolthausen, E., Deuschel, J.-D., Zeitouni, O.: Entropic repulsion of the lattice free field. Commun. Math. Phys, 170(2), 417–443 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bricmont, J., Lebowitz, J.L., Maes, C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5–6), 1249–1268 (1987)

    Article  MathSciNet  Google Scholar 

  7. Deuschel, J.-D., Giacomin, G.: Entropic repulsion for the free field: Pathwise characterization in \(d \ge 3\). Commun. Math. Phys. 447–462 (1999)

  8. Deuschel, J.-D., Pisztora, A.: Surface order large deviations for high-density percolation. Probab Theory Relat Fields 467–482 (1996)

  9. Drewitz, A., Prévost, A., Rodriguez, P.-F.: The sign clusters of the massless Gaussian free field percolate on \({{\mathbb{Z}}}^d\), \(d\ge 3\) (and more). Commun. Math. Phys. 362(2), 513–546 (2018)

    Article  Google Scholar 

  10. Drewitz, A., Prévost, A., Rodriguez, P.-F.: Geometry of Gaussian free field sign clusters and random interlacements. arXiv preprint arXiv:1811.05970 (2018)

  11. Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharp phase transition for the random-cluster and Potts models via decision trees. Ann. Math. 189, 75–99 (2019)

    Article  MathSciNet  Google Scholar 

  12. Duminil-Copin, H., Goswami, S., Rodriguez, P.-F., Severo, F.: Equality of critical parameters for percolation of Gaussian free field level-sets. Preliminary Draft (In preparation). https://www.ihes.fr/~goswami/main.pdf (2019)

  13. Einmahl, U.: Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivar. Anal. 28(1), 20–68 (1989)

    Article  MathSciNet  Google Scholar 

  14. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, vol. 19. Walter de Gruyter, Berlin (2010)

    Book  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  16. Lawler, G.F.: Intersections of Random Walks. Springer Science & Business Media, Berlin (2013)

    Book  Google Scholar 

  17. Lebowitz, J.L., Saleur, H.: Percolation in strongly correlated systems. Phys. A Stat. Mech. Appl. 138(1–2), 194–205 (1986)

    Article  MathSciNet  Google Scholar 

  18. Molchanov, S.A., Stepanov, A.K.: Percolation in random fields. I Theor. Math. Phys. 55(2), 478–484 (1983)

    Article  MathSciNet  Google Scholar 

  19. Nitzschner, M.: Disconnection by level sets of the discrete Gaussian free field and entropic repulsion. Electron. J. Probab. 23, 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  20. Nitzschner, M., Sznitman, A.-S.: Solidification of porous interfaces and disconnection. To appear in J. Eur. Math. Soc. Preprint. arXiv:1706.07229 (2017)

  21. Port, S., Stone, C.: Brownian Motion and Classical Potential Theory. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  22. Rodriguez, P.-F., Sznitman, A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  MathSciNet  Google Scholar 

  23. Spitzer, F.: Principles of Random Walk, vol. 34. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  24. Sznitman, A.-S.: Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Japan 67(4), 1801–1843 (2015)

    Article  MathSciNet  Google Scholar 

  25. Sznitman, A.-S.: On macroscopic holes in some supercritical strongly dependent percolation models. Ann. Probab. 47(4), 2459–2493 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Alain-Sol Sznitman for useful discussions and valuable comments at various stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Chiarini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Strong coupling lemma

Appendix A. Strong coupling lemma

In this appendix we state and prove Proposition A.1 which provides a uniform comparison between the discrete harmonic potential of an arbitrary finite union of discrete L-boxes and the Brownian potential of their \({\mathbb {R}}^d\)-filling when L converges to infinity quick enough. The proof relies on a strong coupling result of [13] in the spirit of Komlós, Major and Tusnády.

We first introduce some notation. We consider integers \(L = L(N) \ge 1\), \(N\in {\mathbb {N}}\). We define for a non-empty finite set of points \({\mathcal {C}}\subseteq {\mathbb {Z}}^d\) the set

$$\begin{aligned} C = \bigcup _{z\in {\mathcal {C}}} \Big (z + [0,L)^d \Big )\cap {\mathbb {Z}}^d, \end{aligned}$$
(A.1)

and its \({\mathbb {R}}^d\)-filling, that is the compact set

$$\begin{aligned} \Gamma = \bigcup _{z\in {\mathcal {C}}} \Big (z + [0,L]^d\Big ). \end{aligned}$$
(A.2)

Moreover we define the compact sets

$$\begin{aligned} {\widetilde{\Gamma }} =\big \{x\in \Gamma \,;\, d_\infty (x,\partial \Gamma )\ge L/4\big \},\quad {\widehat{\Gamma }} = \big \{x\in {\mathbb {R}}^d\,;\, d_\infty (x,\Gamma )\le L/4 \big \}. \end{aligned}$$
(A.3)

Then, we have the following comparison between the hitting probabilities of C for the discrete random walk and the hitting probabilities of \({\widetilde{\Gamma }}\) and \({\widehat{\Gamma }}\) for the Brownian motion.

Proposition A.1

Assume that \(c' N^\eta \le L \le c'' N\) for some \(\eta >0\). Then, for any fixed integer \(M \ge 1\)

$$\begin{aligned}&\liminf _{N\rightarrow \infty } \inf _{{\mathcal {C}}\subseteq B(0, M N)} \inf _{x\in {\mathbb {Z}}^d} \Big (P_x[ H_{C}<\infty ] - W_x[H_{{\widetilde{\Gamma }}}<\infty ]\Big ) \ge 0, \end{aligned}$$
(A.4)
$$\begin{aligned}&\limsup _{N\rightarrow \infty } \sup _{{\mathcal {C}}\subseteq B(0, M N)} \sup _{x\in {\mathbb {Z}}^d}\Big (P_x[ H_{C}<\infty ] - W_x[H_{{\widehat{\Gamma }}}<\infty ]\Big ) \le 0. \end{aligned}$$
(A.5)

Proof

The argument for this proposition is largely inspired by the proof of Proposition 4.1 of [19]. We will only show (A.4) as (A.5) can be proven in a similar way interchanging the roles of the simple random walk and Brownian motion.

Fix \(R>M+c''\) so that \({\widetilde{\Gamma }} \subseteq B_\infty (0, R N)\) for all \({\mathcal {C}}\subseteq B(0,M N)\). We can write

$$\begin{aligned} \begin{aligned} \inf _{{\mathcal {C}}\subseteq B(0, M N)}\inf _{x\in {\mathbb {Z}}^d}&\Big ( P_x[ H_{C}<\infty ] - W_x[H_{{\widetilde{\Gamma }}}<\infty ]\Big ) \\&\ge \left( \inf _{{\mathcal {C}}\subseteq B(0, M N)}\inf _{x\in B(0,R N)} \Big ( P_x[ H_{C}<\infty ] - W_x[H_{{\widetilde{\Gamma }}}<\infty ]\Big ) \right) \\&\wedge \Big ( - \sup _{z\in B_\infty (0,R)^c} W_z[H_{B(0,M+c'')}<\infty ] \Big ), \end{aligned}\nonumber \\ \end{aligned}$$
(A.6)

where we used scaling invariance of the Brownian motion to obtain the term in the second line. Note that the second member of the minimum does not depend on N and converges to zero as \(R \rightarrow \infty \) using the transience of Brownian motion. We will now show that the limit of the first member of the minimum as N grows to infinity is non-negative.

For a closed set \(F \subseteq {\mathbb {R}}^d\) we denote by \(L_F = \sup \{0<t<\infty ; Z_t\in F\}\) the time of last visit of the Brownian motion to F (using the convention that \(L_F = 0\) if the set on the right-hand side is empty). Clearly, for all \(x\in B(0, R N)\) and all \({\mathcal {C}}\subseteq B(0,MN)\), we have \({\widetilde{\Gamma }}\subseteq B(x,2NR)\). Thus, for any fixed \(\epsilon >0\)

$$\begin{aligned} W_x[H_{{\widetilde{\Gamma }}}<\infty ]\le W_x[H_{{\widetilde{\Gamma }}}\le N^{2+\epsilon }] + W_x [L_{B(x,2NR)}> N^{2+\epsilon }], \end{aligned}$$
(A.7)

where the second summand on the right-hand side converges to 0 as \(N\rightarrow \infty \) uniformly in \(x\in B(0, R N)\) and \({\mathcal {C}}\subseteq B(0,MN)\). In fact, \(W_x [L_{B(x,2NR)}> N^{2+\epsilon }] = W_0 [L_{B(0,2R)}> N^{\epsilon }] \rightarrow 0\) as \(N\rightarrow \infty \) by scaling invariance and transience of the Brownian motion. Similar to [19, Proposition 4.1], we define \({\widehat{H}}_{{\widetilde{\Gamma }}}\) to be the smallest integer multiple of 1 / d bigger or equal than \(H_{{\widetilde{\Gamma }}}\). Applying the strong Markov property at \(H_{{\widetilde{\Gamma }}}\) and using translation invariance we get

$$\begin{aligned} W_x[H_{{\widetilde{\Gamma }}}\le N^{2+\epsilon }]\le & {} W_x\Big [H_{{\widetilde{\Gamma }}}\le N^{2+\epsilon }, |Z_{H_{{\widetilde{\Gamma }}}}-Z_{{\widehat{H}}_{{\widetilde{\Gamma }}}}|_{\infty }\le \frac{L}{8}\Big ] \nonumber \\&+\, W_0\Big [\sup _{0\le t\le 1/d}|Z_t|_{\infty }\ge \frac{L}{8}\Big ]. \end{aligned}$$
(A.8)

Note that \(W_0[\sup _{0\le t\le 1/d}|Z_t|_{\infty }\ge L/8]\rightarrow 0\) as \(N\rightarrow \infty \). By Theorem 4 of [13] and the fact that \(L\ge c'N^\eta \) for some \(\eta >0\), there exists a probability space \((\overline{\Omega },\overline{{\mathcal {F}}},{\overline{P}})\), a simple random walk \(({\overline{X}}_n)_{n\ge 0}\) on \({\mathbb {Z}}^d\) and a Brownian motion \(({\overline{Z}}_t)_{t\ge 0}\) on \({\mathbb {R}}^d\), both started at x, such that

$$\begin{aligned} {\overline{P}}\Big [\max _{1\le k\le 2d N^{2+\epsilon }} | {\overline{X}}_k - {\overline{Z}}_{k/d}|_\infty < \frac{L}{8}\Big ] \rightarrow 0, \quad \text {as }N\rightarrow \infty . \end{aligned}$$
(A.9)

Denote by \(H_{{\widetilde{\Gamma }}}^{{\overline{Z}}}\) and \(H_{C}^{{\overline{X}}}\) the entrance times in \({\widetilde{\Gamma }}\) and C, associated to \({\overline{Z}}_\cdot \) and \({\overline{X}}_\cdot \) respectively. By combining (A.7)–(A.9), we obtain

$$\begin{aligned} \begin{aligned} W_x[H_{{\widetilde{\Gamma }}}< \infty ]&\le {\overline{P}}\Big [H_{{\widetilde{\Gamma }}}\le N^{2+\epsilon }, \max _{1\le k\le 2d N^{2+\epsilon }} | {\overline{X}}_k - {\overline{Z}}_{k/d}|_\infty< \tfrac{L}{8}, \\&\qquad \qquad \qquad |{\overline{Z}}_{H^{{\overline{Z}}}_{{\widetilde{\Gamma }}}}-{\overline{Z}}_{{\widehat{H}}^{{\overline{Z}}}_{{\widetilde{\Gamma }}}}|_{\infty }\le \tfrac{L}{8}\Big ] + o(1)\\&\le {\overline{P}}[H_{C}^{{\overline{X}}} < \infty ] + o(1), \quad \text {as }N\rightarrow \infty , \end{aligned} \end{aligned}$$
(A.10)

uniformly in \({\mathcal {C}}\subseteq B(0,MN)\) and in \(x \in B(0,RN)\). The result now follows by plugging (A.10) in (A.6) and by sending first \(N\rightarrow \infty \) and then \(R\rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarini, A., Nitzschner, M. Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets. Probab. Theory Relat. Fields 177, 525–575 (2020). https://doi.org/10.1007/s00440-019-00957-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00957-7

Mathematics Subject Classification

Navigation