Skip to main content
Log in

High-pressure tuning of primary photochemistry in bacterial photosynthesis: membrane-bound versus detergent-isolated reaction centers

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

While photosynthesis thrives at close to normal pressures and temperatures, it is presently well known that life is similarly commonplace in the hostile environments of the deep seas as well as around hydrothermal vents. It is thus imperative to understand how key biological processes perform under extreme conditions of high pressures and temperatures. Herein, comparative steady-state and picosecond time-resolved spectroscopic studies were performed on membrane-bound and detergent-purified forms of a YM210W mutant reaction center (RC) from Rhodobacter sphaeroides under modulating conditions of high hydrostatic pressure applied at ambient temperature. A previously established breakage of the lone hydrogen bond formed between the RC primary donor and the protein scaffold was shown to take place in the membrane-bound RC at an almost 3 kbar higher pressure than in the purified RC, confirming the stabilizing role of the lipid environment for membrane proteins. The main change in the multi-exponential decay of excited primary donor emission across the experimental 10 kbar pressure range involved an over two-fold continuous acceleration, the kinetics becoming increasingly mono-exponential. The fastest component of the emission decay, thought to be largely governed by the rate of primary charge separation, was distinctly slower in the membrane-bound RC than in the purified RC. The change in character of the emission decay with pressure was explained by the contribution of charge recombination to emission decreasing with pressure as a result of an increasing free energy gap between the charge-separated and excited primary donor states. Finally, it was demonstrated that, in contrast to a long-term experimental paradigm, adding a combination of sodium ascorbate and phenazine methosulfate to the protein solution potentially distorts natural photochemistry in bacterial RCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beekman LMP, Visschers RW, Monshouwer R, Heer-Dawson M, Mattioli TA, McGlynn P, Hunter CN, Robert B, van Stokkum IHM, van Grondelle R, Jones MR (1995) Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides: comparisons with detergent-solubilized complexes. Biochemistry 34(45):14712–14721

    Article  CAS  PubMed  Google Scholar 

  • Beekman LMP, van Stokkum IHM, Monshouwer R, Rijnders AJ, McGlynn P, Visschers RW, Jones MR, van Grondelle R (1996) Primary electron transfer in membrane-bound reaction centers with mutations at the M210 position. J Phys Chem 100(17):7256–7268

    Article  CAS  Google Scholar 

  • Beekman LMP, Frese RN, Fowler GJS, Ortiz de Zarate I, Cogdell RJ, van Stokkum I, Hunter CN, van Grondelle R (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: influence of the protein environment. J Phys Chem B 101(37):7293–7301

    Article  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595:235–249

    Article  CAS  PubMed  Google Scholar 

  • Borisov AY, Kotova EA, Samuilov VD (1984) Delayed luminescence of bacteriochlorophyll and primary steps of electron transfer in photosynthetic reaction centers of purple bacteria (review). Mol Biol (Moscow) 18(4):869–891

    CAS  Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Rebane K, Timpmann K (1985) Kinetics of picosecond bacteriochlorophyll luminescence in vivo as a function of the reaction center state. Biochim Biophys Acta 807(3):221–229

    Article  CAS  Google Scholar 

  • Bowyer JR, Hunter CN, Ohnishi T, Niederman RA (1985) Photosynthetic membrane development in Rhodopseudomonas sphaeroides: spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. J Biol Chem 260(6):3295–3304

    CAS  PubMed  Google Scholar 

  • Clayton RK, Devault D (1972) Effects of high pressure on photochemical reaction centers from Rhodopseudomonas spheroides. Photochem Photobiol 15(2):165–175

    Article  CAS  Google Scholar 

  • Dominguez PN, Himmelstoss M, Michelmann J, Lehner FT, Gardiner AT, Cogdell RJ, Zinth W (2014) Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides – Time constants of the initial electron transfer. Chem Phys Lett 601:103–109

    Article  CAS  Google Scholar 

  • Driscoll B, Lunceford C, Lin S, Woronowicz K, Niederman RA, Woodbury NW (2014) Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity. Phys Chem Chem Phys 16(32):17133–17141

    Article  CAS  PubMed  Google Scholar 

  • Freiberg A, Ellervee A, Kukk P, Laisaar A, Tars M, Timpmann K (1993) Pressure effects on spectra of photosynthetic light-harvesting pigment-protein complexes. Chem Phys Lett 214(1):10–16

    Article  CAS  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K (2012a) A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. Biochem Biophys Acta 1817:1471–1482

    CAS  PubMed  Google Scholar 

  • Freiberg A, Kangur L, Olsen J, Hunter CN (2012b) Structural implications of hydrogen-bond energetics in membrane proteins revealed by high-pressure spectroscopy. Biophys J 103:2352–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freiberg A, Chenchiliyan M, Rätsep M, Timpmann K (2016) Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides. Biochim Biophys Acta 11:1727–1733

    Article  CAS  Google Scholar 

  • Fulcher TK, Beatty JT, Jones MR (1998) Demonstration of the key role played by the PufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J Bacteriol 180(3):642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall A, Ellervee A, Bellissent-Funel M-C, Robert B, Freiberg A (2001) Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R261. Biophys J 80(3):1487–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall A, Ellervee A, Robert B, Freiberg A (2004) The effect of internal voids in membrane proteins: high-pressure study of two photochemical reaction centers from Rhodobacter sphaeroides. FEBS Lett 28121:1–5

    Google Scholar 

  • Gibasiewicz K, Pajzderska M, Potter JA, Fyfe PK, Dobek A, Brettel K, Jones MR (2011) Mechanism of recombination of the P+HA radical pair in mutant Rhodobacter sphaeroides reaction centers with modified free energy gaps between P+BA and P+HA. J Phys Chem B 115(44):13037–13050

    Article  CAS  PubMed  Google Scholar 

  • Gibasiewicz K, Pajzderska M, Dobek A, Karolczak J, Burdziński G, Brettel K, Jones MR (2013) Analysis of the temperature-dependence of P+HA charge recombination in the Rhodobacter sphaeroides reaction center suggests nanosecond temperature-independent protein relaxation. Phys Chem Chem Phys 15(38):16321–16333

    Article  CAS  PubMed  Google Scholar 

  • Gibasiewicz K, Białek R, Pajzderska M, Karolczak J, Burdziński G, Jones MR, Brettel K (2016) Weak temperature dependence of P+HA−recombination in mutant Rhodobacter sphaeroides reaction centers. Photosynth Res 128(3):243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godik VI, Borisov AY (1979) Short-lived delayed luminescence of photosynthetic organisms: I: nanosecond afterglows in purple bacteria at low redox potentials. Biochim Biophys Acta 548(2):296–308

    Article  CAS  PubMed  Google Scholar 

  • Godik VI, Borisov AY (1980) Short-lived delayed luminescence of photosynthesizing organisms: II: the ratio between delayed and prompt fluorescence as studied by the modulation method. Biochim Biophys Acta 590(2):182–193

    Article  CAS  PubMed  Google Scholar 

  • Golub M, Pieper J, Peters J, Kangur L, Martin EC, Hunter CN, Freiberg A (2019) Picosecond dynamical response to a pressure-induced break of the tertiary structure hydrogen bonds in a membrane chromoprotein. J Phys Chem B 123(9):2087–2093

    Article  CAS  PubMed  Google Scholar 

  • Hirayama S, Phillips D (1980) Correction for refractive index in the comparison of radiative lifetimes in vapour and solution phases. J Photochem 12(2):139–145

    Article  CAS  Google Scholar 

  • Hirayama S, Yasuda H, Okamoto M, Tanaka F (1991) Effect of pressure on the natural radiative lifetimes of anthracene derivatives in solution. J Phys Chem 95(8):2971–2975

    Article  CAS  Google Scholar 

  • Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis: structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287(1):1–247

    Article  CAS  Google Scholar 

  • Hunter CN, Kramer HJM, Van Grondelle R (1985) Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 807(1):44–51

    Article  CAS  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2008) The purple phototrophic bacteria: advances in photosynthesis and respiration. Vol. 28, Springer: Dordrecht, The Netherlands

  • Jalviste E, Timpmann K, Chenchiliyan M, Kangur L, Jones MR, Freiberg A (2020) High pressure modulation of primary photosynthetic reactions. J Phys Chem B 124(5):718–726

    Article  CAS  PubMed  Google Scholar 

  • Jonas J, DeFries T, Wilbur DJ (1976) Molecular motions in compressed liquid water. J Chem Phys 65:582–588

    Article  CAS  Google Scholar 

  • Jones MR, Visschers RW, van Grondelle R, Hunter CN (1992a) Construction and characterization of a mutant of Rhodobacter sphaeroides with the reaction center as the sole pigment-protein complex. Biochemistry 31(18):4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W, Hunter CN (1992b) Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 6(9):1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Heer-Dawson M, Mattioli TA, Hunter CN, Robert B (1994) Site-specific mutagenesis of the reaction center from Rhodobacter sphaeroides studied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donor. FEBS Lett 339(1–2):18–24

    Article  CAS  PubMed  Google Scholar 

  • Kangur L, Timpmann K, Freiberg A (2008) Stability of integral membrane proteins against high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria. J Phys Chem B 112:7948–7955

    Article  CAS  PubMed  Google Scholar 

  • Kangur L, Jones MR, Freiberg A (2017) Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy. Biophys Chem 231:27–33

    Article  CAS  PubMed  Google Scholar 

  • Leiger K, Freiberg A, Dahlbom MG, Hush NS, Reimers JR (2007) Pressure-induced spectral changes for the special-pair radical cation of the bacterial photosynthetic reaction center. J Chem Phys 126(21):215102

    Article  PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR (2000) X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Lett 467(2–3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Bieser G, Hartwich G, Langenbacher T, Lossau H, Ogrodnik A, Michel-Beyerle M-E (1996) The internal conversion rate of the primary donor in reaction centers of Rhodobacter sphaeroides. Berichte der Bunsengesellschaft für physikalische Chemie 100(12):1967–1973

    Article  Google Scholar 

  • Nagarajan V, Parson WW, Davis D, Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32(46):12324–12336

    Article  CAS  PubMed  Google Scholar 

  • Olmsted J (1976) Effect of refractive index on molecular radiative lifetimes. Chem Phys Lett 38(2):287–292

    Article  CAS  Google Scholar 

  • Pajusalu M, Rätsep M, Kangur L, Freiberg A (2019) High-pressure control of photosynthetic excitons. Chem Phys 525:110404

    Article  CAS  Google Scholar 

  • Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR (2010) An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Phys Chem Chem Phys 12(11):2693–2705

    Article  CAS  PubMed  Google Scholar 

  • Pflock T, Dezi M, Venturoli G, Cogdell RJ, Köhler J, Ollerich S (2008) Comparison of the fluorescence kinetics of detergent-solubilised and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides. Photosynth Res 95:291–298

    Article  CAS  PubMed  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochimica Biophysica Acta 1366(3):301–316

    Article  CAS  Google Scholar 

  • Redline NL, Windsor MW (1992) The effect of pressure on charge separation in photosynthetic bacterial reaction centers of Rhodopseudomonas viridis. Chem Phys Lett 198(3–4):334–340

    Article  CAS  Google Scholar 

  • Redline NL, Windsor MW, Menzel R (1991) The effect of pressure on the secondary (200 ps) charge transfer step in bacterial reaction centers of Rhodobacter sphaeroides R-26. Chem Phys Lett 186(2–3):204–209

    Article  CAS  Google Scholar 

  • Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim Biophys Acta 1749:187–213

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Lauterwasser C, Finkele U, Drews G, Zinth W (2013) Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus. Biochimica et Biophysica Acta (BBA) 1144(3):385–390

    Article  Google Scholar 

  • Silva JL, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44:89–113

    Article  CAS  PubMed  Google Scholar 

  • Swainsbury DJK, Friebe VM, Frese RN, Jones MR (2014) Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron 58:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timpmann K, Ellervee A, Laisaar A, Jones MR, Freiberg A (1998) High pressure induced acceleration of primary photochemistry in membrane-bound wild type and mutant bacterial reaction centres, in ultrafast phenomena in spectroscopy. In: Kaarli R, Freiberg A, Saari P (eds) Institute of physics. University of Tartu, Tartu, pp 236–247

    Google Scholar 

  • Timpmann K, Woodbury NW, Freiberg A (2000) Unraveling exciton relaxation and energy transfer in LH2 photosynthetic antennas. J Phys Chem B 104(42):9769–9771

    Article  CAS  Google Scholar 

  • Timpmann K, Kangur L, Lõhmus A, Freiberg A (2017) High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures. J Phys B: At Mol Opt Phys 50(14):144006

    Article  CAS  Google Scholar 

  • Urboniene V, Vrublevskaja O, Trinkunas G, Gall A, Robert B, Valkunas L (2007) Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Biophysical J 93:2188–2198

    Article  CAS  Google Scholar 

  • Van Brederode ME, Jones MR, Van Grondelle R (1997a) Fluorescence excitation spectra of membrane-bound photosynthetic reaction centers of Rhodobacter sphaeroides in which the tyrosine M210 residue is replaced by tryptophan: evidence for a new pathway of charge separation. Chem Phys Lett 268(1):143–149

    Article  Google Scholar 

  • van Brederode ME, Jones MR, Mourik FV, van Stokkum IHM, van Grondelle R (1997b) A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36(23):6855–6861

    Article  PubMed  Google Scholar 

  • van Brederode ME, van Mourik F, van Stokkum IHM, Jones MR, van Grondelle R (1999) Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 96(5):2054–2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J, Lambry J-C, Martin J-L (1994a) Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33(22):6750–6757

    Article  CAS  PubMed  Google Scholar 

  • Vos MH, Jones MR, McGlynn P, Hunter CN, Breton J, Martin J-L (1994b) Influence of the membrane environment on vibrational motions in reaction centres of Rhodobacter sphaeroides. Biochim Biophys Acta 1186:117–122

    Article  CAS  Google Scholar 

  • Williams JC, Steiner LA, Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides. Proteins Struct Funct Genet 1(4):312–325

    Article  CAS  PubMed  Google Scholar 

  • Windsor MW, Menzel R (1989) Effect of pressure on the 12 ns charge recombination step in reduced bacterial reaction centers of Rhodobacter sphaeroides R-26. Chem Phys Lett 164(2–3):143–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Estonian Research Council (grants PRG539, PRG664, and PSG264), the ESF DoRa 4 program (grant NLOFY12523T), and the H2020-MSCA-RISE-2015 program (grant 690853) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvi Freiberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timpmann, K., Jalviste, E., Chenchiliyan, M. et al. High-pressure tuning of primary photochemistry in bacterial photosynthesis: membrane-bound versus detergent-isolated reaction centers. Photosynth Res 144, 209–220 (2020). https://doi.org/10.1007/s11120-020-00724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00724-z

Keywords

Navigation