Skip to main content
Log in

Identifying the characteristics of brain glucose metabolism using normal 18F-FDG PET database in patients with temporal lobe epilepsy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to measure the global brain glucose metabolism of patients with temporal lobe epilepsy (TLE) using MIMneuro software based on the normal brain glucose metabolism database.

Methods

In this cross-sectional study, 23 patients (11 males and 12 females, mean age 25.6 ± 10.1 years) with TLE who underwent 18F-labeled fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET) were enrolled. 18F-FDG PET images were then imported into MIMneuro software, which can automatically analyze the differences in regional brain glucose metabolism between patients and a normal database, and the results of different brain regions were presented by values of Z-score.

Results

In patients with TLE, 18F-FDG PET imaging showed that in addition to the presence of temporal lobe hypometabolism, there was hypometabolism in the ipsilateral hippocampus, parahippocampal gyrus, insula, amygdala, temporal operculum, and bilateral cerebellar hemisphere, while hypermetabolism was found in the contralateral temporal lobe, frontal lobe, parietal lobe, parietal lobule, angular gyrus, and precentral gyrus. There was no significant difference in brain areas between the left and the right temporal lobe seizures (P > 0.05).

Conclusions

We found that TLE has a specific characteristic in terms of brain glucose metabolism, and the underlying mechanism needs to be further studied that may be helpful to localize seizure focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SPM:

Statistical parametric mapping

ES:

Epileptogenic side

MTLE:

Mesial temporal lobe epilepsy

TLE:

Temporal lobe epilepsy

HS:

Hippocampal sclerosis

ROI:

Region of interest

References

  1. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393:689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  2. Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS (2008) Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. NeuroImage 40:728–737. https://doi.org/10.1016/j.neuroimage.2007.12.03

    Article  PubMed  Google Scholar 

  3. Kojan M, Doležalová I, Koriťáková E, Mareček R, Řehák Z, Hermanová M, Brázdil M, Rektor I (2018) Predictive value of preoperative statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav 79:46–52. https://doi.org/10.1016/j.yebeh.2017.11.014

    Article  PubMed  Google Scholar 

  4. Radtke RA, Hanson MW, Hoffman JM, Crain BJ, Walczak TS, Lewis DV, Beam C, Coleman RE, Friedman AH (1993) Temporal-lobe hypometabolism on PET - predictor of seizure control after temporal lobectomy. Neurology 43:1088–1092. https://doi.org/10.1212/wnl.43.6.1088

    Article  CAS  PubMed  Google Scholar 

  5. Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, Somerville E, Mohamed A (2012) Relationship between preoperative hypometabolism and surgical outcome in neocortical epilepsy surgery. Epilepsia 53:1333–1340. https://doi.org/10.1111/j.1528-1167.2012.03547.x

    Article  PubMed  Google Scholar 

  6. Powell HW, Koepp MJ, Symms MR, Boulby PA, Salek-Haddadi A, Thompson PJ, Duncan JS, Richardson MP (2005) Material-specific lateralization of memory encoding in the medial temporal lobe: blocked versus event-related design. NeuroImage 27:231–239. https://doi.org/10.1016/j.neuroimage.2005.04.033

    Article  CAS  PubMed  Google Scholar 

  7. Kim YK, Lee DS, Lee SK, Kim SK, Chung CK, Chang KH, Choi KY, Chung JK, Lee MC (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of F-18-FDG PET using SPM. J Nucl Med 44:1006–1012

    PubMed  Google Scholar 

  8. Wang YH, An Y, Fan XT, Lu J, Ren LK, Wei PH, Cui BX, Du JL, Lu C, Wang D, Zhang HQ, Shan YZ, Zhao GG (2018) Comparison between simultaneously acquired arterial spin labeling and 18F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG. NeuroImage Clin 19:824–830. https://doi.org/10.1016/j.nicl.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding Y, Zhu Y, Jiang B, Zhou Y, Jin B, Hou H, Wu S, Zhu J, Wang ZI, Wong CH, Ding M, Zhang H, Wang S, Tian M (2018) 18F-FDG PET and high-resolution MRI co-registration for pre-surgical evaluation of patients with conventional MRI-negative refractory extra-temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 45:1567–1572. https://doi.org/10.1007/s00259-018-4017-0

    Article  PubMed  Google Scholar 

  10. Rathore C, Dickson JC, Teotonio R, Ell P, Duncan JS (2014) The utility of 18Ffluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 108:1306–1314

    Article  Google Scholar 

  11. Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, Grassi F, Bettinardi V, Frackowiak RS, Fazio F (1999) Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. NeuroImage 9:63–80. https://doi.org/10.1006/nimg.1998.0381

    Article  CAS  PubMed  Google Scholar 

  12. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim BT, Kim SE (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30:581–587. https://doi.org/10.1007/s00259-002-1079-8

    Article  PubMed  Google Scholar 

  13. Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, Somerville E, Mohamed A (2010) The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia 51:1365–1373. https://doi.org/10.1111/j.1528-1167.2010.02552.x

    Article  PubMed  Google Scholar 

  14. Güvenç C, Dupont P, Van den Stock J, Seynaeve L, Porke K, Dries E, Van Bouwel K, van Loon J, Theys T, Goffin KE, Van Paesschen W (2018) Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis. EJNMMI Res 8:31. https://doi.org/10.1186/s13550-018-0385-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salmenpera TM, Simister RJ, Bartlett P, Symms MR, Boulby PA, Free SL, Barker GJ, Duncan JS (2006) High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 71:102–106. https://doi.org/10.1016/j.eplepsyres.2006.05.020

    Article  PubMed  Google Scholar 

  16. Hesdorffer DC, Ishihara L, Webb DJ, Mynepalli L, Galwey NW, Hauser WA (2016) Occurrence and recurrence of attempted suicide among people with epilepsy. JAMA Psychiatry 73:80–86. https://doi.org/10.1001/jamapsychiatry.2015.2516

    Article  PubMed  Google Scholar 

  17. Dreier JW, Pedersen CB, Gasse C, Christensen J (2019) Antiepileptic drugs and suicide: role of prior suicidal behavior and parental psychiatric disorder. Ann Neurol 86:951–961. https://doi.org/10.1002/ana.25623

    Article  PubMed  Google Scholar 

  18. Cockerell OC, Johnson AL, Sander JW, Goodridge DM, Shorvon S (1994) Mortality from epilepsy: results from a prospective population-based study. Lancet 344:918–921. https://doi.org/10.1016/s0140-6736(94)92270-5

    Article  CAS  PubMed  Google Scholar 

  19. Soria V, González-Rodríguez A, Huerta-Ramos E, Usall J, Cobo J, Bioque M, Barbero JD, García-Rizo C, Tost M, Monreal JA, PNECAT Group, Labad J (2018) Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: a systematic review and narrative synthesis. Psychoneuroendocrinol 93:8–19. https://doi.org/10.1016/j.psyneuen.2018.04.012

    Article  CAS  Google Scholar 

  20. Labate A, Cerasa A, Gambardella A, Aguglia U, Quattrone A (2008) Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study. Neurology 30:1094–1101. https://doi.org/10.1212/01.wnl.0000326898.05099.04

    Article  Google Scholar 

  21. Englot DJ, Hinkley LB, Kort NS, Imber BS, Mizuiri D, Honma SM, Findlay AM, Garrett C (2015) Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138:2249–2262. https://doi.org/10.1093/brain/awv130

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bouilleret V, Dupont S, Spelle L, Baulac M, Samson Y, Semah F (2002) Insular cortex involvement in mesiotemporal lobe epilepsy: a positron emission tomography study. Ann Neurol 51:202–208. https://doi.org/10.1002/ana.10087

    Article  PubMed  Google Scholar 

  23. Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B, Nataf F, Roux FX (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174. https://doi.org/10.1093/brain/awh014

    Article  PubMed  Google Scholar 

  24. Cui R, Niu N, Li F (2014) Crossed cerebellar hypermetabolism demonstrated by FDG PET. Clin Nucl Med 39:409–412. https://doi.org/10.1097/rlu.0000000000000388

    Article  PubMed  Google Scholar 

  25. Kim J, Lee SK, Lee JD (2005) Decreased fractional anisotropy of middle cerebellar peduncle in crossed cerebellar diaschisis: diffusion-tensor imaging positron-emission tomography correlation study. AJNR Am J Neuroradiol 26:2224–2228

    PubMed  Google Scholar 

  26. Kajimoto K, Oku N, Kimura Y (2007) Crossed cerebellar diaschisis: a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2- [18F]fluoro-D-glucose. Ann Nucl Med 21:109–113

    Article  CAS  Google Scholar 

  27. Calabria F, Schillaci O (2012) Recurrent glioma and crossed cerebellar diaschisis in a patient examined with 18F-DOPA and 18F-FDG PET/CT. Clin Nucl Med 37:878–879

    Article  Google Scholar 

  28. Takahashi M, Soma T, Kawai K, Koyama K, Ohtomo K, Momose T (2012) Voxel-based comparison of preoperative FDG-PET between mesial temporal lobe epilepsy patients with and without postoperative seizure-free outcomes. Ann Nucl Med 26:698–706

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Project of New Technology in the Second Affiliated Hospital of Air Force Medical University and Beijing Municipal Administration of the Hospitals’ Ascent Plan, Code: DFL20180802.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menghui Yuan, Longxiao Wei or Jie Lu.

Ethics declarations

This study was approved by the Ethics Committee of the Second Affiliated Hospital of Air Force Medical University (Xi’an, China).

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Wei, Y., Yuan, M. et al. Identifying the characteristics of brain glucose metabolism using normal 18F-FDG PET database in patients with temporal lobe epilepsy. Neurol Sci 41, 3219–3226 (2020). https://doi.org/10.1007/s10072-020-04426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04426-1

Keywords

Navigation