Skip to main content
Log in

Effect of Austenite Conditioning on Martensitic Transformation in Commercial Grade Interstitial-Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Martensite is an important phase for the strengthening of interstitial-free (IF) steel. The as-received sample is soaked in the austenitic temperature domain at 930 °C for 5 minutes, followed by water quenching in a Gleeble 3800® thermo-mechanical simulator. The outcome shows a dramatic increase in strength by lath martensite and massive ferrite. Hot deformation is also a part of the comparative study. The as-received sample is processed in 0.5 compressive strain at the rate 0.01/s in the same austenitic temperature domain, followed by water quenching. Dynamic recrystallization has not been observed. Instead, plastic deformation in austenite leads to grain boundary nucleation of diffusional ferrite, inhibiting nucleation and growth of massive ferrite in a triplex phase mixture of lath martensite. The austenite to martensite transformation follows Kurdjumov–Sachs (K–S) orientation relationships. The calculated variants based on the K–S orientation relationships between parent and product phase designate that the transformation of differently oriented martensite can originate under constraints from deformed austenite. Thus, the strength-ductility combination is verified with martensite obtained under two different austenite conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1 R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty: Mater. Lett., 2007, vol. 61, pp. 2919–22.

    Article  CAS  Google Scholar 

  2. 2 S. Hoile: Mater. Sci. Technol., 2012, vol. 16, pp. 1079–93.

    Article  Google Scholar 

  3. 3 K. Tsunoyama: Phys. Status Solidi Appl. Res., 1998, vol. 167, pp. 427–33.

    Article  CAS  Google Scholar 

  4. 4 G. Singh, T. Nanda, S.J. Miadad, N.C. Gorain, T. Venugopalan, and B.R. Kumar: Arch. Civ. Mech. Eng., 2019, vol. 19, pp. 469–83.

    Article  Google Scholar 

  5. K.S. T. Obara: Proc. 39th Mech. Work. Steel Process. Conf., 1997, pp. 307–314.

  6. 6 M. Nikravesh, M. Naderi, and G.H. Akbari: Mater. Sci. Eng. A, 2012, vol. 540, pp. 24–9.

    Article  CAS  Google Scholar 

  7. 7 M. Abbasi, M. Naderi, and A. Saeed-Akbari: Mater. Des., 2013, vol. 45, pp. 1–5.

    Article  CAS  Google Scholar 

  8. 8 H.Z. Wang, P. Yang, W.M. Mao, and F.Y. Lu: J. Alloys Compd., 2013, vol. 558, pp. 26–33.

    Article  CAS  Google Scholar 

  9. 9 B.X. Wang, X.H. Liu, and G.D. Wang: Mater. Des., 2009, vol. 30, pp. 2198–204.

    Article  CAS  Google Scholar 

  10. Gleeble, https://gleeble.com/products/gleeble-systems/gleeble-3800.html.

  11. EDAX-TSL, https://www.edax.com/products/ebsd/oim-analysis.

  12. 12 M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  13. 13 F.S. LePera: Metallography, 1979, vol. 12, pp. 263–8.

    Article  CAS  Google Scholar 

  14. 14 H.K.D.H. Bhadeshia: Prog. Mater. Sci., 1985, vol. 29, pp. 321–86.

    Article  CAS  Google Scholar 

  15. 15 A. Gilbert and W.S. Owen: Acta Metall., 1962, vol. 10, pp. 45–54.

    Article  CAS  Google Scholar 

  16. T.B. Massalski: Metall. Trans. A, 1984, vol. 15A, pp. 421–5.

    Article  CAS  Google Scholar 

  17. M. Lima and W. Kurz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2337–45.

    Article  CAS  Google Scholar 

  18. M. Hillert: Lectures on the Theory of Phase Transformations, 1975.

  19. 19 J.Y. Kang, S.C. Kim, J.O. Oh, H.N. Han, K.H. Oh, and H.C. Lee: Scr. Mater., 2012, vol. 66, pp. 45–8.

    Article  CAS  Google Scholar 

  20. 20 J.S. Pascover and S.V. Radcliffe: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 673–82.

    CAS  Google Scholar 

  21. 21 D. Saha, E. Biro, A. Gerlich, and Y. Zhou: Mater. Sci. Eng. A, 2016, vol. 673, pp. 467–75.

    Article  CAS  Google Scholar 

  22. 22 H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  CAS  Google Scholar 

  23. N.Z. Nishiyama: Martensitic Transformation, Academic Press Inc, New York, 1978.

    Google Scholar 

  24. 24 C. Cayron: Acta Crystallogr. Sect. A, 2013, vol. 69, pp. 498–509.

    Article  CAS  Google Scholar 

  25. 25 T. Imao, S. Hiroshi, T. Tomo, and O. Chiaki: Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st edn., Butterworth & Co, London, 1988.

    Google Scholar 

  26. C.N. Homsher: Colorado School of Mines, 2013.

  27. 27 S.-C. Chen, C.-Y. Huang, Y.-T. Wang, and H.-W. Yen: Mater. Des., 2017, vol. 134, pp. 434–45.

    Article  CAS  Google Scholar 

  28. 28 P.P. Suikkanen, C. Cayron, A.J. DeArdo, and L.P. Karjalainen: J. Mater. Sci. Technol., 2011, vol. 27, pp. 920–30.

    Article  CAS  Google Scholar 

  29. 29 Y. Mazaheri, A. Kermanpur, and A. Najafizadeh: Mater. Sci. Eng. A, 2015, vol. 639, pp. 8–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tata Steel Jamshedpur for the samples, Dept. of Metallurgical & Materials Engineering and Institute Instrumentation Center, IIT Roorkee for the experimental facilities, and Dr. P.P. Chattopadhyay for the valuable discussion. The financial assistance from the Department of Science and Technology, Government of India under the FIST grant is also acknowledged for the Gleeble set up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 13 October 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, M., Karmakar, A., Syed, B. et al. Effect of Austenite Conditioning on Martensitic Transformation in Commercial Grade Interstitial-Free Steel. Metall Mater Trans A 51, 3435–3446 (2020). https://doi.org/10.1007/s11661-020-05799-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05799-w

Navigation