Skip to main content
Log in

Sorption of 89Zr on hydroxyapatite nanoparticles as carriers for nuclear medicine

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption behavior of 89Zr on hydroxyapatite (Ca10(PO4)5(OH)2, HA) nanoparticles in an aqueous medium and 0.9% NaCl at various pH values was studied. The fast kinetics of the process was determined; the stability of the obtained conjugate in a model biological medium at 25 and 37 °C was shown. The possibility of further use of the 89Zr@HA conjugate in various radiopharmaceuticals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brandt M, Cardinale J, Aulsebrook ML et al (2018) An overview of PET radiochemistry, part 2: radiometals. J Nucl Med 59:1500–1506. https://doi.org/10.2967/jnumed.117.190801

    Article  CAS  PubMed  Google Scholar 

  2. Holland JP, Sheh Y, Lewis JS (2009) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36:729–739. https://doi.org/10.1016/j.nucmedbio.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Severin GW, Jørgensen JT, Wiehr S et al (2015) The impact of weakly bound 89Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol 42:360–368. https://doi.org/10.1016/j.nucmedbio.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Degering D, Unterricker S, Stolz W (1988) Excitation function of the 89Y(d,2n)89Zr reaction. J Radioanal Nucl Chem Lett 127:7–11. https://doi.org/10.1007/BF02165500

    Article  CAS  Google Scholar 

  5. Ciarmatori A, Cicoria G, Pancaldi D et al (2011) Some experimental studies on 89Zr production. Radiochim Acta 99:631–634. https://doi.org/10.1524/ract.2011.1822

    Article  CAS  Google Scholar 

  6. Dejesus OT, Nickles RJ (1990) Production and purification of 89Zr, a potential PET antibody label. Int J Radiat Appl Instrum Part 41:789–790. https://doi.org/10.1016/0883-2889(90)90030-K

    Article  CAS  Google Scholar 

  7. Lahiri S, Mukhopadhyay B, Das NR (1997) Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by HDEHP. Appl Radiat Isot 48:883–886. https://doi.org/10.1016/S0969-8043(96)00338-7

    Article  CAS  Google Scholar 

  8. Kandil SA, Scholten B, Saleh ZA et al (2007) A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J Radioanal Nucl Chem 274:45–52. https://doi.org/10.1007/s10967-006-6892-2

    Article  CAS  Google Scholar 

  9. Kasbollah A, Eu P, Cowell S, Deb P (2013) Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals. J Nucl Med Technol 41:35–41. https://doi.org/10.2967/jnmt.112.111377

    Article  PubMed  Google Scholar 

  10. Meijs WE, Herscheid JDM, Haisma HJ et al (1994) Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl Radiat Isot 45:1143–1147. https://doi.org/10.1016/0969-8043(94)90029-9

    Article  CAS  Google Scholar 

  11. Queern SL, Aweda TA, Massicano AVF et al (2017) Production of Zr-89 using sputtered yttrium coin targets. Nucl Med Biol 50:11–16. https://doi.org/10.1016/j.nucmedbio.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  12. Pandey MK, Engelbrecht HP, Byrne JP et al (2014) Production of 89Zr via the 89Y(p, n)89Zr reaction in aqueous solution: effect of solution composition on in-target chemistry. Nucl Med Biol 41:309–316. https://doi.org/10.1016/j.nucmedbio.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Verel I, Visser GWM, Boellaard R et al (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44:1271–1281

    CAS  PubMed  Google Scholar 

  14. Ekatova TY, Kazakov AG (2019) Extraction-chromatographic behavior of Zr(IV) and Hf(IV) on TRU and LN resins in mixtures of HNO3 and HF. J Radioanal Nucl Chem 321:557–563. https://doi.org/10.1007/s10967-019-06601-x

    Article  CAS  Google Scholar 

  15. Kazakov AG, Aliev RA, Ostapenko VS et al (2018) Separation of 89Zr from irradiated yttrium targets by extraction chromatography. J Radioanal Nucl Chem 317:605–611. https://doi.org/10.1007/s10967-018-5888-z

    Article  CAS  Google Scholar 

  16. Heskamp S, Raavé R, Boerman OC et al (2017) 89Zr-immunoPET in oncology: state of the art 89Zr-radiochemistry. Bioconjug Chem 28:2211–2223. https://doi.org/10.1021/acs.bioconjchem.7b00325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heskamp S, van Laarhoven HWM, Molkenboer-Kuenen JDM et al (2010) ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J Nucl Med 51:1565–1572. https://doi.org/10.2967/jnumed.110.075648

    Article  PubMed  Google Scholar 

  18. Perk LR, Visser OJ, Stigter-Van Walsum M et al (2006) Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345. https://doi.org/10.1007/s00259-006-0160-0

    Article  CAS  PubMed  Google Scholar 

  19. Pandya DN, Pailloux S, Tatum D et al (2015) Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun 51:2301–2303. https://doi.org/10.1039/C4CC09256B

    Article  CAS  Google Scholar 

  20. Deri MA, Ponnala S, Zeglis BM et al (2014) Alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 57:4849–4860. https://doi.org/10.1021/jm500389b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhai C, Summer D, Rangger C et al (2015) Novel bifunctional cyclic chelator for 89Zr labeling-radiolabeling and targeting properties of RGD conjugates. Mol Pharm 12:2142–2150. https://doi.org/10.1021/acs.molpharmaceut.5b00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deri MA, Ponnala S, Kozlowski P et al (2015) P-SCN-BN-HOPO: a superior bifunctional chelator for 89Zr immunoPET. Bioconjug Chem 26:2579–2591. https://doi.org/10.1021/acs.bioconjchem.5b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Medina C, Tang J, Abdel-Atti D et al (2015) PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J Nucl Med 56:1272–1277. https://doi.org/10.2967/jnumed.115.158956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Medina C, Abdel-Atti D, Zhang Y et al (2014) A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med 55:1706–1711. https://doi.org/10.2967/jnumed.114.141861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li N, Yu Z, Pham T et al (2017) A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int J Nanomed 12:3281–3294. https://doi.org/10.2147/IJN.S134379

    Article  CAS  Google Scholar 

  26. Zhao Y, Shaffer TM, Das S et al (2017) Near-infrared quantum dot and 89Zr dual-labeled nanoparticles for in vivo Cerenkov imaging. Bioconjug Chem 28:600–608. https://doi.org/10.1021/acs.bioconjchem.6b00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karmani L, Labar D, Valembois V et al (2013) Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging 8:402–408. https://doi.org/10.1002/cmmi.1539

    Article  CAS  PubMed  Google Scholar 

  28. Cheng L, Kamkaew A, Shen S et al (2016) Facile preparation of multifunctional WS2/WOx nanodots for chelator-free 89Zr-labeling and in vivo PET imaging. Small 12:5750–5758. https://doi.org/10.1002/smll.201601696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M (2016) Synthetic hydroxyapatite in pharmaceutical applications. Ceram Int 42:2472–2487. https://doi.org/10.1016/j.ceramint.2015.10.048

    Article  CAS  Google Scholar 

  30. Chakraborty S, Das T, Sarma HD et al (2008) Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in the therapy of liver cancer. Nucl Med Biol 35:589–597. https://doi.org/10.1016/j.nucmedbio.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Chakraborty S, Vimalnath KV, Rajeswari A et al (2014) Preparation, evaluation, and first clinical use of 177Lu-labeled hydroxyapatite (HA) particles in the treatment of rheumatoid arthritis: utility of cold kits for convenient dose formulation at hospital radiopharmacy. J Label Compd Radiopharm 57:453–462. https://doi.org/10.1002/jlcr.3202

    Article  CAS  Google Scholar 

  32. Clunie G, Lui D, Cullum I et al (1995) Samarium-153-particulate hydroxyapatite radiation synovectomy: biodistribution data for chronic knee synovitis. J Nucl Med 36:51–57

    CAS  PubMed  Google Scholar 

  33. Vasiliev AN, Severin A, Lapshina E et al (2017) Hydroxyapatite particles as carriers for 223Ra. J Radioanal Nucl Chem 311:1503–1509. https://doi.org/10.1007/s10967-016-5007-y

    Article  CAS  Google Scholar 

  34. Severin AV, Orlova MA, Shalamova ES et al (2019) Nanohydroxyapatite and its textures as potential carriers of promising short-lived lead isotopes. Russ Chem Bull 68:2197–2204. https://doi.org/10.1007/s11172-019-2688-8

    Article  CAS  Google Scholar 

  35. Orlova MA, Nikolaev AL, Trofimova TP et al (2019) Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Bull Russ State Med Univ. https://doi.org/10.24075/brsmu.2018.075

    Article  Google Scholar 

  36. Orlova MA, Nikolaev AL, Trofimova TP et al (2019) Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes. Russ Chem Bull 68:1102–1108. https://doi.org/10.1007/s11172-019-2526-z

    Article  CAS  Google Scholar 

  37. Teterin YA, Kazakov AG, Teterin AY et al (2019) The study of Zr adsorption on nanodispersed hydroxyapatite: X-ray photoelectron study. J Radioanal Nucl Chem 321:341–347. https://doi.org/10.1007/s10967-019-06586-7

    Article  CAS  Google Scholar 

  38. Severin AV, Orlova MA, Shalamova ES et al (2017) Sorption and cytotoxicity of zinc on hydroxyapatite. Russ Chem Bull 66:9–15. https://doi.org/10.1007/s11172-017-1692-0

    Article  CAS  Google Scholar 

  39. Severin AV, Pankratov DA (2016) Synthesis of nanohydroxyapatite in the presence of iron(III) ions. Russ J Inorg Chem 61:265–272. https://doi.org/10.1134/s0036023616030190

    Article  CAS  Google Scholar 

  40. Melikhov IV, Komarov VF, SAV (2000) Two-dimensional crystal hydroxyapatite. Rep Russ Acad Sci 373:355 (in Russian)

    CAS  Google Scholar 

  41. Lobaz V, Konefał R, Pánek J et al (2019) In situ in vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids Surf B Biointerfaces 179:143–152. https://doi.org/10.1016/j.colsurfb.2019.03.057

    Article  CAS  PubMed  Google Scholar 

  42. Adamiano A, Iafisco M, Sandri M et al (2018) On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomater 73:458–469. https://doi.org/10.1016/j.actbio.2018.04.040

    Article  CAS  PubMed  Google Scholar 

  43. Salek N, Bahrami-Samani A, Shirvani-Arani S et al (2018) Highly stable 177Lu-organic framework as a potential agent for treatment of metastatic bone. IEEE Trans Nanobiosci 17:361–371. https://doi.org/10.1109/TNB.2018.2830812

    Article  Google Scholar 

  44. Cole LE, McGinnity TL, Irimata LE et al (2018) Effects of bisphosphonate ligands and PEGylation on targeted delivery of gold nanoparticles for contrast-enhanced radiographic detection of breast microcalcifications. Acta Biomater 82:122–132. https://doi.org/10.1016/j.actbio.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  45. Ishizaki A, Mishiro K, Shiba K et al (2019) Fundamental study of radiogallium-labeled aspartic acid peptides introducing octreotate derivatives. Ann Nucl Med 33:244–251. https://doi.org/10.1007/s12149-018-01326-5

    Article  CAS  PubMed  Google Scholar 

  46. Attar Nosrati S, Alizadeh R, Ahmadi SJ, Erfani M (2019) Design, synthesis and characterization of hydroxyapatite-chitosan nanocomposite radiolabelled with 153Sm as radiopharmaceutical for use in radiosynovectomy. Radiochim Acta 108:57–65. https://doi.org/10.1515/ract-2018-3038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Foundation for Basic Research (RFBR) according to research Project No 18-33-00649 (all researches except radiometrical detections which were carried out according to state task realization of Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Theme No. 0137-2019-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey G. Kazakov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A.G., Severin, A.V. Sorption of 89Zr on hydroxyapatite nanoparticles as carriers for nuclear medicine. J Radioanal Nucl Chem 325, 199–205 (2020). https://doi.org/10.1007/s10967-020-07192-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07192-8

Keywords

Navigation