Skip to main content
Log in

Theoretical exploration about the thermal stability and detonation properties of nitro-substituted hypoxanthine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nitro-substituted derivatives of hypoxanthine are designed by substituting the hydrogen atoms by nitro groups. The heats of formation (HOF) are calculated at the G3MP2 level to confirm the thermal stability. Also, the bond dissociation energy (BDE) accompanied by the bond order is calculated at the same level to explore kinetic stability. To evaluate the potential application as high-energy density materials, the explosive heat, the molecular density, the detonation pressure, and detonation velocity are estimated by using the Kamlet-Jacobs (K-J) equation. Furthermore, the molecular sensitivities are considered by calculating the character height (H50) and the amount of free space per molecule in the crystal lattice (ΔV). Based on our calculations, the trinitro-substituted hypoxanthine (C) is screened out as the potential high-energy density compounds for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klapötke TM, Stierstorfer J (2008) The CN7 anion. J Am Chem Soc 131:1122–1134

    Article  Google Scholar 

  2. Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl G, Kaiser M, Ticmanis U (2001) [N2H5]+2[N4C−NN−CN4]2−: a new high-nitrogen high-energetic material. Inorg Chem 40:3570–3575

    Article  CAS  Google Scholar 

  3. Li B, Li L, Chen S (2019) Thermal stability and detonation character of nitro-substituted derivatives of imidazole. J Mol Model 25:298–304

    Article  Google Scholar 

  4. Ostmark H, Langlet A, Bergman H, Wingborg N, Wellmar U, Bemm U (1998) FOX-7-a new explosive with low sensitivity and high performance. In: 11th International Symposium on Detonation, Snowmass, CO, USA

  5. Li B, Lulin L, Yang C (2020) Theoretical study on nitroso-substituted derivatives of azetidine as potential high energy density compounds. Chin J Struct Chem 39:643–650

    CAS  Google Scholar 

  6. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38:2004–2009

    Article  CAS  Google Scholar 

  7. Yan T, Sun G, Chi W, Li B, Wu H (2013) Looking for high energy density compounds among polynitraminepurines. J Mol Model 19:3491–3499

    Article  CAS  Google Scholar 

  8. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262

    Article  Google Scholar 

  9. Nagao H, Nishizawa H, Tanaka Y, Fukata T, Mizushima T, Furuno M, Bamba T, Tsushima Y, Fujishima Y, Kita S (2018) Hypoxanthine secretion from human adipose tissue and its increase in hypoxia. Obesity 26:1168–1178

    Article  CAS  Google Scholar 

  10. Al Balushi HWM, Rees DC, Brewin JN, Hannemann A, Gibson JS (2018) The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia. Physiol Rep 6

  11. Lee JS, Wang RX, Alexeev EE, Lanis JM, Battista KD, Glover LE, Colgan SP (2018) Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 293:6039–6051

    Article  CAS  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.1, Wallingford, CT

  13. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Mo/ller-Plesset order. J Chem Phys 110:4703–4709

    Article  CAS  Google Scholar 

  14. Bak KL, Jørgensen P, Olsen J, Helgaker T, Klopper W (2000) Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations. J Chem Phys 112:9229–9242

    Article  CAS  Google Scholar 

  15. Su Y-Q, Wang Y, Liu J-X, Filot IAW, Alexopoulos K, Zhang L, Muravev V, Zijlstra B, Vlachos DG, Hensen EJM (2019) Theoretical approach to predict the stability of supported single-atom catalysts. ACS Catal 9:3289–3297

    Article  CAS  Google Scholar 

  16. Ledo JM, Flores H, Freitas VLS, Solano-Altamirano JM, Hernández-Pérez JM, Ribeiro da Silva MDMC, Camarillo EA (2019) Thermal and structural properties of ethyl 2- and 3-aminobenzoates: experimental and computational approaches. J Chem Thermodyn 133:93–99

    Article  CAS  Google Scholar 

  17. Linstrom PJ, Mallard WG (2001) The NIST chemistry webbook: a chemical data resource on the internet. J Chem Eng Data 46:1059–1063

    Article  CAS  Google Scholar 

  18. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Prop Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  20. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    Article  CAS  Google Scholar 

  21. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  22. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  23. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    Article  CAS  Google Scholar 

  24. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    Article  CAS  Google Scholar 

  25. Waters DD, Guyton JR, Herrington DM, McGowan MP, Wenger NK, Shear C, Members TSC (2004) Treating to new targets (TNT) study: does lowering low-density lipoprotein cholesterol levels below currently recommended guidelines yield incremental clinical benefit? Am J Cardiol 93:154–158

    Article  Google Scholar 

  26. Moore DW, Burkardt LA, McEwan WS (1956) Viscosity and density of the liquid system TNT-picric acid and four related pure materials. J Chem Phys 25:1235–1241

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guizhou Province (Nos. QKHPTRC[2018]5778-09 and QKHJC[2020]1Y038) and the Natural Science Foundation of Guizhou Education University (Nos. 14BS017 and 2019ZD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Butong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, L. & Luo, T. Theoretical exploration about the thermal stability and detonation properties of nitro-substituted hypoxanthine. J Mol Model 26, 114 (2020). https://doi.org/10.1007/s00894-020-04391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04391-8

Keywords

Navigation