Skip to main content
Log in

Laser-induced depletion of ultrathin PFPE lubricants using a quantitative coarse-grained model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Knowledge of laser-pulsed processing of ultrathin liquids on solid surfaces is of great importance in advancing the understanding of synthesis, characterization and applications of functional nanofilms. In this work, we performed molecular dynamics simulations coupled with a novel quantitative coarse-grained model to study laser-induced local heating and depletion behaviors of Fomblin Z2000 lubricants. It was found that the Fomblin lubricant films experience severe evaporation and thermodiffusion-related degradation under laser heating. The ultrathin lubricants inevitably lose their frictional resistance under extremely high temperatures and thermal gradients (i.e., up to 990 K and 65.4 K/nm) that are required for FePt media in HAMR systems. The factors that influence the local thermal depletion, such as laser power, spot size, and scanning velocity, were investigated as well. The results clearly show that the laser power has the greatest influence on the relative maximum temperature change and subsequently the severe lubricant film depletion during rapid laser heating, while the spot size and scanning velocity play a relatively weaker role in the laser-induced local thermal instability. The findings in this work are thus believed to provide molecular scale insights into laser-induced local heating and depletion of ultrathin lubricant films from a precise quantitative perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Li S, Niu S, Cao X, Han Z, Ren L (2016) Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate. Appl Surf Sci 379:230–237. https://doi.org/10.1016/j.apsusc.2016.03.234

    Article  CAS  Google Scholar 

  2. Li J, Zhang RJ, Jiang HQ, Cheng GJ (2011) Scalable nano-patterning of graphenes using laser shock. Nanotechnology 22:475303. https://doi.org/10.1088/0957-4484/22/47/475303

    Article  CAS  PubMed  Google Scholar 

  3. Feng Y, Lv J, Liu J, Gao N, Peng H, Chen Y (2011) Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition. Appl Surf Sci 257:3433–3439. https://doi.org/10.1016/j.apsusc.2010.11.041

    Article  CAS  Google Scholar 

  4. Sarabi S, Bogy DB (2018) Effect of viscoelasticity on lubricant behavior under heat-assisted magnetic recording conditions. Tribol Lett 66. https://doi.org/10.1007/s11249-017-0979-5

  5. Gropper D, Wang L, Harvey TJ (2016) Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int 94:509–529. https://doi.org/10.1016/j.triboint.2015.10.009

    Article  Google Scholar 

  6. Li B, Wong CH (2015) Molecular dynamics studies of lubricant depletion under moving laser heating: effects of laser power and film thickness. Tribol Int 92:38–46. https://doi.org/10.1016/j.triboint.2015.05.015

    Article  CAS  Google Scholar 

  7. Rottmayer RE, Batra S, Buechel D, Challener WA, Hohlfeld J, Kubota Y et al (2006) Heat-assisted magnetic recording. IEEE Trans Magn 42:2417–2421. https://doi.org/10.1109/TMAG.2006.879572

    Article  Google Scholar 

  8. Kryder MH, Gage EC, McDaniel TW, Challener WA, Rottmayer RE, Ju GP et al (2008) Heat assisted magnetic recording. Proc IEEE 96:1810–1835. https://doi.org/10.1109/jproc.2008.2004315

    Article  CAS  Google Scholar 

  9. Ma YS, Chen XY, Liu B (2012) Experimental study of lubricant depletion in heat-assisted magnetic recording: effect of the duration of one laser heating. Tribol Lett 48:337–344. https://doi.org/10.1007/s11249-012-0032-7

    Article  CAS  Google Scholar 

  10. Ma Y, Gonzaga L, An C, Liu B (2011) Effect of laser heating duration on lubricant depletion in heat assisted magnetic recording. IEEE Trans Magn 47:3445–3448. https://doi.org/10.1109/TMAG.2011.2157475

    Article  Google Scholar 

  11. Xu BX, Liu ZJ, Ji R, Toh YT, Hu JF, Li JM et al (2012) Thermal issues and their effects on heat-assisted magnetic recording system (invited). J Appl Phys 111:07B701. https://doi.org/10.1063/1.3671421

    Article  CAS  Google Scholar 

  12. Yu P, Zhou W, Yu S, Zeng Y (2013) Laser-induced local heating and lubricant depletion in heat assisted magnetic recording systems. Int J Heat Mass Transf 59:36–45. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.007

    Article  Google Scholar 

  13. Yanagihara H, Stanković I, Blomgren F, Rosén A, Sakata I (2014) A molecular dynamics simulation investigation of fuel droplet in evolving ambient conditions. Combust Flame 161:541–550. https://doi.org/10.1016/j.combustflame.2013.09.002

    Article  CAS  Google Scholar 

  14. Dai XY, Li H, Shen SN, Wu SJ (2017) Study of perfluoropolyether lubricant consumption and recovery in heat assisted magnetic recording using molecular dynamics simulation method. IEEE Trans Magn 53:3301606. https://doi.org/10.1109/tmag.2016.2637872

    Article  CAS  Google Scholar 

  15. Dai XY, Li H, Lei X, Shen SN, Wu SJ, Liu S et al (2018) Modeling of formation and breaking of lubricant bridge in the head-disk interface by molecular dynamic simulation. Mol Simul 44:94–99. https://doi.org/10.1080/08927022.2017.1342124

    Article  CAS  Google Scholar 

  16. Li B, Wong CH (2013) Depletion kinetics of perfluoropolyether films with functional end groups using molecular dynamics simulation. Polymer 54:6008–6018. https://doi.org/10.1016/j.polymer.2013.08.033

    Article  CAS  Google Scholar 

  17. Li B, Wong CH, Chen QB (2013) Kinetics of lubricant desorption and decomposition under heat treatment: a molecular dynamics study. Soft Matter 9:700–708. https://doi.org/10.1039/c2sm26973b

    Article  CAS  Google Scholar 

  18. Li B, Wong CH (2014) Lubricant depletion due to moving laser heating: a molecular dynamics simulation study. Tribol Int 80:41–48. https://doi.org/10.1016/j.triboint.2014.06.020

    Article  Google Scholar 

  19. Li B, Wong CH (2014) Molecular dynamics simulation of thermal-induced local heating and depletion of ultrathin perfluoropolyether lubricant under moving laser heating. Tribol Lett 55:303–313. https://doi.org/10.1007/s11249-014-0363-7

    Article  CAS  Google Scholar 

  20. Seo YW, Rosenkranz A, Talke FE (2018) Molecular dynamics study of lubricant depletion by pulsed laser heating. Appl Surf Sci 440:73–83. https://doi.org/10.1016/j.apsusc.2017.12.262

    Article  CAS  Google Scholar 

  21. Li B, Chen Q, Huang S, Liu H (2017) Developing structure and thermodynamic properties-consistent coarse-grained model for random copolymer systems. Polymer 123:107–120. https://doi.org/10.1016/j.polymer.2017.07.016

    Article  CAS  Google Scholar 

  22. Guo Q, Chung PS, Jhon MS (2008) Nano-mechanics of perfluoropolyether films: compression versus tension. IEEE Trans Magn 44:3698–3701. https://doi.org/10.1109/TMAG.2008.2001671

    Article  CAS  Google Scholar 

  23. Guo Q, Izumisawa S, Phillips DM, Jhon MS (2003) Surface morphology and molecular conformation for ultrathin lubricant films with functional end groups. J Appl Phys 93:8707–8709. https://doi.org/10.1063/1.1540169

    Article  CAS  Google Scholar 

  24. Wong CH, Li B, Yu SK, Hua W, Zhou WD (2011) Molecular dynamics simulation of lubricant redistribution and transfer at near-contact head-disk interface. Tribol Lett 43:89–99. https://doi.org/10.1007/s11249-011-9788-4

    Article  CAS  Google Scholar 

  25. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  26. Tagawa N, Andoh H, Tani H (2010) Study on lubricant depletion induced by laser heating in thermally assisted magnetic recording systems: effect of lubricant thickness and bonding ratio. Tribol Lett 37:411–418. https://doi.org/10.1007/s11249-009-9533-4

    Article  CAS  Google Scholar 

  27. Richter HJ, Poon CC, Parker G, Staffaroni M, Mosendz O, Zakai R et al (2013) Direct measurement of the thermal gradient in heat assisted magnetic recording. IEEE Trans Magn 49:5378–5381. https://doi.org/10.1109/TMAG.2013.2262771

    Article  Google Scholar 

  28. Dieny B, Chshiev M, Charles B, Strelkov N, Truong A, Fruchart O et al (2018) Impact of intergrain spin-transfer torques due to huge thermal gradients in heat-assisted magnetic recording. IEEE Trans Magn 54:1–11. https://doi.org/10.1109/TMAG.2018.2863225

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51603160) and the Open Fund Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2017-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei Li or Qiubo Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Chee How Wong is an independent researcher.

Electronic supplementary material

ESM 1

(DOCX 1.31 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lei, A., Chen, Q. et al. Laser-induced depletion of ultrathin PFPE lubricants using a quantitative coarse-grained model. J Mol Model 26, 115 (2020). https://doi.org/10.1007/s00894-020-04373-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04373-w

Keywords

Navigation