Skip to main content
Log in

Quantitative evaluation of pore-scale heterogeneity based on statistical analysis of a pore network model of unconsolidated porous media

Évaluation quantitative de l’hétérogénéité à l’échelle des pores basée Sur l’analyse statistique d’un modèle de réseau de pores de milieux poreux non consolidés

Evaluación cuantitativa de la heterogeneidad a escala de poros basada en el análisis estadístico de un Modelo de redes de poros en medios porosos no consolidados

基于松散孔隙介质孔隙网络模型的统计分析的孔隙尺度非均质性定量评价

Avaliação quantitativa da heterogeneidade em escala de poros com base na análise estatística de um Modelo de rede de poros de meios porosos não consolidados

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Heterogeneity is a common feature of aquifers and plays an important role in the efficiency of remediation of groundwater contamination. Pore-scale heterogeneity is an important control on governing mass transport and chemical/biological reactions in reactive transport processes, but quantitative characterization and systematic assessment of this property has been limited. In this study, a pore-scale-heterogeneity-synthetic index was developed to quantitatively characterize pore-scale heterogeneity of unconsolidated porous media. It was an attempt to systematically assess pore-scale heterogeneity based on statistical analysis of pore-structure characterization parameters. Pore network extraction was conducted to assist in quantifying the pore structure based on X-ray μ-CT imaging data. The quantitative characterization of pore structure provided input data for a comprehensive evaluation model. Two alternative weighting approaches—principle component analysis and the entropy method—were utilized to calculate the weight of each evaluation indicator. Based on the comprehensive evaluation results, a guideline for classification of pore-scale heterogeneity was proposed by cluster analysis. Further analysis indicated that particle size, shape, and distribution had a potential influence on pore-scale heterogeneity. The bigger, more irregular particles, as well as a wider particle-size distribution, were conducive to forming high heterogeneity at pore scale. The obtained results will provide useful information and theoretical support for pore-scale heterogeneity characterization and understanding of the pore-scale mechanisms of reactive transport processes.

Résumé

L’hétérogénéité est une caractéristique commune des aquifères et joue un rôle important dans l’efficacité de la remédiation de la contamination des eaux souterraines. L’hétérogénéité à l’échelle des pores est un contrôle important de la régulation du transport de masse et des réactions chimiques/biologiques dans les processus de transport réactif, mais la caractérisation quantitative et l’évaluation systématique de cette propriété ont été limitées. Dans cette étude, un indice synthétique d’hétérogénéité à l’échelle des pores a été développé pour caractériser quantitativement l’hétérogénéité à l’échelle des pores des milieux poreux non consolidés. Il s’agissait d’une tentative d’évaluation systématique de l’hétérogénéité à l’échelle des pores basée sur l’analyse statistique des paramètres de caractérisation de la structure des pores. L’extraction du réseau de pores a été réalisée pour aider à quantifier la structure des pores sur la base des données d’imagerie rayons X et μ-CT. La caractérisation quantitative de la structure des pores a fourni des données d’entrée pour un modèle d’évaluation complet. Deux approches alternatives de pondération—l’analyse des composants principaux et la méthode de l’entropie—ont été utilisées pour calculer le poids de chaque indicateur d’évaluation. Sur la base des résultats de l’évaluation complète, une ligne directrice pour la classification de l’hétérogénéité de l’échelle des pores a été proposée par l’analyse des groupes. Une analyse plus poussée a indiqué que la taille, la forme et la distribution des particules avaient une influence potentielle sur l’hétérogénéité à l’échelle des pores. Les particules plus grandes et plus irrégulières, ainsi qu’une distribution plus large de la taille des particules, étaient propices à la formation d’une grande hétérogénéité à l’échelle des pores. Les résultats obtenus fourniront des informations utiles et un soutien théorique pour la caractérisation de l’hétérogénéité à l’échelle des pores et la compréhension des mécanismes des processus de transport réactif à l’échelle des pores.

Resumen

La heterogeneidad es una característica común de los acuíferos y desempeña un papel importante en la eficiencia de la remediación de la contaminación de las aguas subterráneas. La heterogeneidad a escala de los poros es un control importante para regular el transporte en masa y las reacciones químicas/biológicas en los procesos de transporte reactivo, pero la caracterización cuantitativa y la evaluación sistemática de esta propiedad han sido limitadas. En el presente estudio se elaboró un índice sintético de heterogeneidad a escala de poro para caracterizar cuantitativamente la heterogeneidad a escala de poro de los medios porosos no consolidados. Fue un intento de evaluar sistemáticamente la heterogeneidad a escala de poro sobre la base de un análisis estadístico de los parámetros de caracterización de la estructura de los poros. La extracción de la red de poros se realizó para ayudar a cuantificar la estructura de los poros sobre la base de datos de imágenes de rayos X μ-CT. La caracterización cuantitativa de la estructura de los poros proporcionó datos de entrada para un modelo de evaluación exhaustiva. Para estimar el peso de cada indicador en la evaluación se utilizaron dos métodos alternativos de ponderación, a saber, el análisis de los componentes principales y el método de la entropía. Sobre la base de los resultados de una evaluación exhaustiva, se propuso una directriz para la clasificación de la heterogeneidad a escala de poros mediante el análisis de clusters. Otros análisis indicaron que el tamaño, la forma y la distribución de las partículas podían influir en la heterogeneidad a escala de los poros. Las partículas más grandes e irregulares, así como una distribución del tamaño de las partículas más amplia, propiciaban la formación de una gran heterogeneidad a escala de poro. Los resultados obtenidos proporcionarán información útil y apoyo teórico para la caracterización de la heterogeneidad a escala de poro y la comprensión de los mecanismos en los procesos de transporte reactivo.

摘要

非均质性是含水层的一个共同特性,极大地影响着地下水污染的修复效率。在反应运移过程中,孔隙尺度的非均质性是控制物质传输和化学/生物反应的重要因素,但对这种非均质性的定量表征和系统评价却受到一定的限制。为了定量表征松散孔隙介质的非均质性,本文提出了一种孔隙尺度非均质性综合指数。本项指标是基于对孔隙结构表征参数的统计分析,试图系统地评估孔隙尺度的异质性。利用X射线μ-CT成像数据进行孔隙网络提取,对孔隙结构进行定量化处理。孔隙结构的定量表征为综合评价模型提供了输入数据。各评价指标采用主成分分析法和熵权法两种不同的赋权方法来计算权重。在综合评价结果的基础上,通过聚类分析,提出孔隙尺度非均质性的分类准则。进一步分析表明,颗粒的大小、形状和分布对孔隙尺度的非均质性有潜在影响。颗粒越大、越不规则、粒径分布越广泛,孔隙尺度的非均质性越高。本文所得结果将为孔隙尺度非均质性的表征和反应运移过程中的孔隙尺度机理研究提供有用的信息和理论的支撑。

Resumo

A heterogeneidade é uma característica comum dos aquíferos e desempenha um papel importante na eficiência da remediação da contaminação das águas subterrâneas. A heterogeneidade em escala de poros é um importante controle sobre o transporte de massa e reações químicas/biológicas nos processos de transporte reativo, mas a caracterização quantitativa e a avaliação sistemática dessa propriedade tem sido limitadas. Neste estudo, um índice sintético de heterogeneidade na escala de poros foi desenvolvido para caracterizar quantitativamente a heterogeneidade na escala de poros de meios porosos não consolidados. Foi uma tentativa de avaliar sistematicamente a heterogeneidade da escala de poros com base na análise estatística dos parâmetros de caracterização da estrutura de poros. A extração da rede de poros foi realizada para auxiliar na quantificação da estrutura dos poros com base nos dados de imagem de raios-x μ-CT. A caracterização quantitativa da estrutura de poros forneceu dados de entrada para um modelo de avaliação abrangente. Duas abordagens alternativas de ponderação—análise de componentes principais e método de entropia—foram utilizadas para calcular o peso de cada indicador de avaliação. Com base nos resultados abrangentes da avaliação, uma diretriz para classificação da heterogeneidade na escala de poros foi proposta por análise de agrupamentos. Análises posteriores indicaram que o tamanho, a forma e a distribuição das partículas tiveram uma influência potencial na heterogeneidade da escala de poros. As partículas maiores e mais irregulares, bem como uma distribuição de tamanho de partícula mais ampla, foram propícias à formação de alta heterogeneidade na escala de poros. Os resultados obtidos fornecerão informações úteis e suporte teórico para a caracterização da heterogeneidade da escala de poros e o entendimento dos mecanismos da escala de poros dos processos de transporte reativo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Kharusi AS, Blunt MJ (2007) Network extraction from sandstone and carbonate pore space images. J Pet Sci Eng 56(4):219–231

    Google Scholar 

  • Baldwin CA, Sederman AJ, Mantle MD, Alexander P, Gladden LF (1996) Determination and characterization of the structure of a pore space from 3D volume images. J Colloid Interf Sci 181(1):79–92

    Google Scholar 

  • Beckers E, Plougonven E, Roisin C, Hapca S, Léonard A, Degré A (2014) X-ray microtomography: a porosity-based thresholding method to improve soil pore network characterization? Geoderma 219–220:145–154

    Google Scholar 

  • Bernabé Y, Revil A (1995) Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys Res Lett 22:1529–1532

    Google Scholar 

  • Bijeljic B, Raeini A, Mostaghimi P, Blunt MJ (2013) Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys Rev E 87:013011

    Google Scholar 

  • Blunt MJ, Jackson MD, Piri M, Valvatne PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour 25:1069–1089

    Google Scholar 

  • Chang NB, Chen HW, Ning SK (2001) Identification of river water quality using the fuzzy synthetic evaluation approach. J Environ Manag 63:293–305

    Google Scholar 

  • Clausnitzer V, Hopmans JW (2000) Pore-scale measurements of solute breakthrough using microfocus X-ray computed tomography. Water Resour Res 36:2067–2079

    Google Scholar 

  • Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev 123:1–17

    Google Scholar 

  • Comunian A, De Micheli L, Lazzati C, Felletti F, Giacobbo F, Giudici M, Bersezio R (2016) Hierarchical simulation of aquifer heterogeneity: implications of different simulation settings on solute-transport modeling. Hydrogeol J 24(2):319–334

    Google Scholar 

  • Dewanckele J, Kock TD, Boone MA, Cnudde V, Brabant L, Boone MN, Fronteau G, Hoorebeke LV, Jacobs P (2012) 4D imaging and quantification of pore structure modifications inside natural building stones by means of high-resolution X-ray CT. Sci Total Environ 416:436–448

    Google Scholar 

  • Ding B, Li C, Zhang M, Ji F, Dong X (2015) Effects of pore size distribution and coordination number on the prediction of filtration coefficients for straining from percolation theory. Chem Eng Sci 127:40–51

    Google Scholar 

  • Dong H, Blunt MJ (2009) Pore-network extraction from micro-computerized-tomography images. Phys Rev E 80036307

  • Gharasoo M, Centler F, Regnier P, Harms H, Thullner M (2012) A reactive transport modeling approach to simulate biogeochemical processes in pore structures with pore-scale heterogeneities. Environ Model Softw 30:102–114

    Google Scholar 

  • Ghezzehei TA (2012) Linking sub-pore scale heterogeneity of biological and geochemical deposits with changes in permeability. Adv Water Resour 39:1–6

    Google Scholar 

  • Grevers MCJ, Jong ED, St. Arnaud RJ (1989) The characterization of soil macroporosity with CT scanning. Can J Soil Sci 69:629–637

    Google Scholar 

  • Hainsworth J, Aylmore L (1983) The use of computer assisted tomography to determine spatial distribution of soil water content. Soil Res 21:435–443

    Google Scholar 

  • Hangai Y, Takahashi K, Yamaguchi R, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2012) Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography. Mat Sci Eng A-Struct 556:678–684

    Google Scholar 

  • Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three-dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil 189:167–179

    Google Scholar 

  • Heijs AWJ, Lange JD, Schoute JFT, Bouma J (1995) Computed tomography as a tool for non-destructive analysis of flow patterns in macroporous clay soils. Geoderma 64(3–4):183–196

    Google Scholar 

  • Helliwell JR, Sturrock CJ, Grayling KM, Tracy SR, Flavel RJ, Young IM, Whalley WR, Mooney SJ (2013) Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: a review. Eur J Soil Sci 64:279–297

    Google Scholar 

  • Herring AL, Andersson L, Newell DL, Carey JW, Wildenschild D (2014) Pore-scale observations of supercritical CO2 drainage in Bentheimer sandstone by synchrotron x-ray imaging. Int J Greenh Gas Con 25:93–101

    Google Scholar 

  • Irvine DJ, Sheldon HA, Simmons CT, Werner AD, Griffiths CM (2015) Investigating the influence of aquifer heterogeneity on the potential for thermal free convection in the Yarragadee aquifer, Western Australia. Hydrogeol J 23(1):161–173

    Google Scholar 

  • Jerauld GR, Salter SJ (1990) The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transp Porous Media 5:103–151

    Google Scholar 

  • Krembs FJ, Siegrist RL, Crimi ML, Furrer RF, Petri BG (2010) ISCO for groundwater remediation: analysis of field applications and performance. J Groundw Monitor Remed 30(4):42–53

    Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400

    Google Scholar 

  • Kuo YF, Chen PC (2006) Selection of mobile value-added services for system operators using fuzzy synthetic evaluation. Expert Syst Appl 30(4):612–620

    Google Scholar 

  • Lai P, Moulton K, Krevor S (2015) Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks. Chem Geol 411(8):260–273

    Google Scholar 

  • Lee BH, Lee SK (2017) Probing the water distribution in porous model sands with two immiscible fluids: a nuclear magnetic resonance micro-imaging study. J Hydrol 553:637–650

    Google Scholar 

  • Li S, You Y (2014) The evaluation model of psychological quality for civil aviation student pilot based on fuzzy comprehensive evaluation. In: Harris D (eds) Engineering psychology and cognitive ergonomics. Springer, Cham, Switzerland, pp 335–343

  • Liang Z, Ioannidis MA, Chatzis I (2000) Geometric and topological analysis of three-dimensional porous media: pore space partitioning based on morphological skeletonization. J Colloid Interface Sci 221:13–24

    Google Scholar 

  • Liang Z, Yang K, Sun Y, Yuan J, Zhang H, Zhang Z (2006) Decision support for choice optimal power generation projects: fuzzy comprehensive evaluation model based on the electricity market. Energ Policy 34:3359–3364

    Google Scholar 

  • Lindquist WB, Lee SM, Coker DA, Jones KW, Spanne P (1996) Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J Geophys Res-Sol Ea 101(B4):8297–8310

    Google Scholar 

  • Mahmoodlu MG, Th VGM, Thomas S, Amir R (2018) Unsaturated hydraulic properties of heterogeneously packed sands: a pore-scale computational study. J Hydrol 565:570–580

    Google Scholar 

  • Mees F, Swennen R, Geet MV, Jacobs P (2003) Applications of X-ray computed tomography in the geosciences. Geol Soc Lond Spec Publ 215(1):1–6

    Google Scholar 

  • Okabe H, Blunt MJ (2005) Pore space reconstruction using multiple-point statistics. J Pet Sci Eng 46:121–137

    Google Scholar 

  • Pierret A, Capowiez Y, Belzunces L, Moran CJ (2002) 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106:247–271

    Google Scholar 

  • Rab MA, Haling RE, Aarons SR, Hannah M, Young IM, Gibson D (2014) Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils. Geoderma 213:460–470

    Google Scholar 

  • Schnarr M, Truax C, Farquhar G, Hood E, Gonullu T, Stickney B (1998) Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J Contam Hydrol 29(3):205–224

    Google Scholar 

  • Silin D, Patzek T (2006) Pore space morphology analysis using maximal inscribed spheres. Physica A 371(2):336–360

    Google Scholar 

  • Smith MM, Sholokhova Y, Hao Y, Carroll SA (2013) Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure. Environ Sci Technol 47:262–268

    Google Scholar 

  • Song QQ, Jiang QZ, Song ZZ (2015) Optimization of CO2 separation technologies for Chinese refineries based on a fuzzy comprehensive evaluation model. Petrol Sci 12(1):197–206

    Google Scholar 

  • Stolpovsky K, Gharasoo M, Thullner M (2012) The impact of pore-size heterogeneities on the spatiotemporal variation of microbial metabolic activity in porous media. Soil Sci 177:98–110

    Google Scholar 

  • Tracy SR, Daly KR, Sturrock CJ, Crout NMJ, Mooney SJ, Roose T (2015) Three-dimensional quantification of soil hydraulic properties using X-ray computed tomography and image-based modeling. Water Resour Res 51:1006–1022

    Google Scholar 

  • Vogel HJ, Roth K (2001) Quantitative morphology and network representation of soil pore structure. Adv Water Resour 24:233–242

    Google Scholar 

  • Waduge WAP, Soga K, Kawabata J, Phillips R, Guo PJ, Popescu R (2002) Laboratory testing of air sparging/SVE system for remediation of NAPLs entrapped in heterogeneous soil. Physical Modelling in Geotechnics: Icpmg 02 International Conference, St. John’s, Newfoundland, July 2002

  • Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

    Google Scholar 

  • Willingham TW, Werth CJ, Valocchi AJ (2008) Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments. Environ Sci Technol 42:3185–3193

    Google Scholar 

  • Xian S (2010) A new fuzzy comprehensive evaluation model based on the support vector machine. Fuzzy Inform Eng 2(1):75–86

    Google Scholar 

  • Zhang C, Kang Q, Wang X, Zilles JL, Müller RH, Werth CJ (2010) Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media. Environ Sci Technol 44:3085–3092

    Google Scholar 

  • Zhou Z, Zhang X, Dong W (2013) Fuzzy comprehensive evaluation for safety guarantee system of reclaimed water quality. Procedia Environ Sci 18:227–235

    Google Scholar 

  • Zong Y, Yu X, Zhu M, Lu S (2015) Characterizing soil pore structure using nitrogen adsorption, mercury intrusion porosimetry, and synchrotron-radiation-based X-ray computed microtomography techniques. J Soils Sediments 15:302–312

    Google Scholar 

  • Zou ZH, Yun Y, Sun JN (2006) Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci 18:1020–1023

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Imperial College Consortium on Pore-scale Modeling for their help with the pore network extraction algorithm.

Funding

This work was supported by the National Natural Science Foundation of China (No. 41572219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Chen.

Electronic supplementary material

ESM 1

(PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wang, X. & Chen, J. Quantitative evaluation of pore-scale heterogeneity based on statistical analysis of a pore network model of unconsolidated porous media. Hydrogeol J 28, 1841–1852 (2020). https://doi.org/10.1007/s10040-020-02162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02162-6

Keywords

Navigation