Skip to main content

Advertisement

Log in

Linking sensory and proton transfer reaction–mass spectrometry analyses for the assessment of melon fruit (Cucumis melo L.) quality traits

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Sixty-seven samples of ten melon types (Cucumis melo L.) were evaluated to determine the relationship between their quality traits: sensory attributes, pH, soluble solids, and volatile organic compounds. Fruits from the cantalupensis, conomon, dudaim, inodorus, and momordica cultivar groups were analyzed. The sensory profiles were assessed using ten attributes covering odor, flavor, and taste characteristics, whereas the volatile profiles were derived by proton transfer reaction–mass spectrometry. Fruits from the cantalupensis and inodorus cultivars showed an opposite pattern for several quality traits. Fruits from the dudaim cultivar were more related to the cantalupensis, whereas conomon and momordica showed an intermediate behavior between inodorus and cantalupensis. The attributes of odor and flavor intensity, ripe fruit odor, fermentative odor, and fermentative flavor correlated positively to C3–C9 esters (r = 0.43–0.73; p ≤ 0.01). Positive correlations were also observed for several alcohols (r = 0.36–0.82; p ≤ 0.05), including methanol, ethanol, and diol alcohols, as well as for several aldehydes (r = 0.43–0.85; p ≤ 0.01), such as acetaldehyde, butanal, methyl butanal, heptanal, and decanal. The attributes mentioned above were negatively correlated with two C9 aldehydes, 2,6-nonadienal and nonenal (r = − 0.45 to − 0.62; p ≤ 0.01), whereas sweetness was negatively correlated with two C6 green leaf volatiles, hexenal and 3-hexenol (r = − 0.50; − 0.67; p ≤ 0.001). The melon fruits presented distinct differences in the quality traits evaluated. These results provide information for the development of new cultivars with characteristic taste combinations without compromising other desirable fruit quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Stepansky A, Kovalski I, Schaffer AA, Perl-Treves R (1999) Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Resour Crop Ev 46:53–62

    Article  Google Scholar 

  2. Burger Y, Sa’ar U, Paris HS, Lewinshon E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for valuable fruit quality traits in Cucumis melo. Isr J Plant Sci 54:233–242

    Article  CAS  Google Scholar 

  3. Saladié M, Cañizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudière C, Gibon Y, Stitt M, Lunn JE, Garcia-Mas J (2015) Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics 16:1–20

    Article  CAS  Google Scholar 

  4. Obando-Ulloa JM, Moreno E, García-Mas J, Nicolai B, Lammertyn J, Monforte AJ, Fernández-Trujillo JP (2008) Climacteric or non-climacteric behavior in melon fruit 1. Aroma volatiles Postharvest. Biol Technol 49:27–37

    Article  CAS  Google Scholar 

  5. Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    Article  CAS  Google Scholar 

  6. Kyriacou MC, Leskovar DI, Colla G, Rouphael Y (2018) Watermelon and melon fruit quality: the genotypic and agro-environmental factors implicated. Sci Hortic 234:393–408

    Article  Google Scholar 

  7. Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N (2015) Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biol 15:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gonda I, Burger Y, Schaffer AA, Ibdah M, Tadmor YA, Katzir N, Fait A, Lewinsohn E (2016) In: Havkin-Frenkel D and Dudai N (eds) Biotechnology in Flavor Production, 2nd edn. Wiley Blackwell, Oxford

  9. Saftner R, Abbott JA, Lester G, Vinyard B (2006) Sensory and analytical comparison of orange-fleshed honeydew to cantaloupe and green-fleshed honeydew for fresh-cut chunks. Postharvest. Biol Technol 42:150–160

    Article  CAS  Google Scholar 

  10. Escribano S, Sánchez FJ, Lázaro A (2010) Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical–chemical attributes: indications for future genetic improvements. Eur Food Res Technol 231:611–621

    Article  CAS  Google Scholar 

  11. Kourkoutas D, Elmore JS, Mottram DS (2006) Comparison of the volatile and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem 97:95–102

    Article  CAS  Google Scholar 

  12. King BM, Duineveld CAA, Arents P, Meyners M, Schroff SI, Soekhai ST (2007) Retronasal odor dependence on tastants in profiling studies of beverages. Food Qual Prefer 18:286–295

    Article  Google Scholar 

  13. King B, Arents P, Duineveld CAA, Meyners M, Schroff SI, Soekhai ST (2006) Orthonasal and retronasal perception of some green leaf volatiles used in beverage flavors. J Agr Food Chem 54:2664–2670

    Article  CAS  Google Scholar 

  14. Aprea E, Charles M, Endrizzi I, Corollaro ML, Betta E, Biasioli F, Gasperi F (2017) Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Sci Rep 7:44950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arvisenet G, Ballester J, Ayed C, Sémon E, Andriot I, Le Quere JL, Guichard E (2019) Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Qual Prefer 71:172–180

    Article  Google Scholar 

  16. Yabumoto K, Yamaguchi M, Jennings WG (1978) Production of volatile compounds by muskmelon, Cucumis melo. Food Chem 3:7–16

    Article  CAS  Google Scholar 

  17. Moshonas MG, Shaw PE, Baldwin EA, Yuen W (1993) Volatile and nonvolatile components in Hami melon (Cucumis melo L.). LWT-Food Sci Technol 26:577–589

    Article  CAS  Google Scholar 

  18. Senesi E, Di Cesare LF, Prinzivalli C, Lo Scalzo R (2005) Influence of ripening stage on volatiles composition, physicochemical indexes and sensory evaluation in two varieties of muskmelon (Cucumis melo L var reticulatus Naud). J Sci Food Agric 85:1241–1251

    Article  CAS  Google Scholar 

  19. Beaulieu JC, Lancaster VA (2007) Correlating volatile compounds, sensory attributes, and quality parameters in stored fresh-cut cantaloupe. J Agric Food Chem 55:9503–9513

    Article  CAS  PubMed  Google Scholar 

  20. Vallone S, Sivertsen H, Anthon GE, Barrett DM, Mitcham SEE, Zakharov F (2013) An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chem 139:171–183

    Article  CAS  PubMed  Google Scholar 

  21. Lignou S, Parker JK, Baxter C, Mottram DS (2014) Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloup melons (Cucumis melo L.) harvested at different maturities. Food Chem 148:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verzera A, Dima G, Tripodi G, Condurso C, Crinò P, Romano D, Mazzaglia A, Lanza CM, Restuccia C, Paratore A (2014) Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Sci Hortic 169:118–124

    Article  CAS  Google Scholar 

  23. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR–MS). Medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  24. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–375

    Article  CAS  Google Scholar 

  25. International Organization for Standardization (1993) Sensory analysis - general guidance for the selection, training and monitoring of assessors - part 1: selected assessors, 8586–1:1993. Geneva. https://www.iso.org/standard/15875.html. Accessed 15 Apr 2020

  26. International Organization for Standardization (1994) Sensory analysis - general guidance for the selection, training and monitoring of assessors - part 2: experts, 8586–2:1994. Geneva. https://www.iso.org/standard/15876.html. Accessed 15 Apr 2020

  27. Bianchi T, Guerrero L, Gratacós-Cubarsí M, Claret A, Argyris J, Garcia-Mas J, Hortós M (2016) Textural properties of different melon (Cucumis melo L.) fruit types: sensory and physical-chemical evaluation. Sci Hortic 201:46–56

    Article  CAS  Google Scholar 

  28. International Organization for Standardization (2007) Sensory analysis - general guidance for the design of test rooms, 8589:2007. Geneva. https://www.iso.org/standard/36385.html. Accessed 15 Apr 2020

  29. Cappellin L, Biasioli F, Fabris A, Schuhfried E, Soukoulis C, Mark TD, Gasperi F (2010) Improved mass accuracy in PTR–TOF-MS: another step towards better compound identification in PTR–MS. Int J Mass Spectrom 290:60–63

    Article  CAS  Google Scholar 

  30. Güler Z, Karaka F, Yetisir H (2013) Volatile compounds and sensory properties in various melons, which were chosen from different species and different locations, grown in Turkey. Int J Food Porp 16:168–179

    Article  CAS  Google Scholar 

  31. Keast RSJ, Breslin PAS (2002) An overview of binary taste-taste interactions. Food Qual Prefer 14:111–124

    Article  Google Scholar 

  32. Esteras C, Rambla JL, Sánchez G, López-Gresa MP, González-Mas MC, Fernández-Trujillo JP, Bellés JM, Granell A, Picó MB (2018) Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J Sci Food Agric 98:3915–3925

    Article  PubMed  Google Scholar 

  33. Lo Scalzo R, Papadimitriu C, Bertolo G, Maestrelli A, Torreggiani D (2001) Influence of cultivar and osmotic dehydration time on aroma profiles of muskmelon (Cucumis melo, cv reticulatus Naud.) spheres. J Food Eng 49:261–264

    Article  Google Scholar 

  34. Beaulieu JC, Grimm CC (2001) Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J Agric Food Chem 49:1345–1352

    Article  CAS  PubMed  Google Scholar 

  35. Chaparro-Torres LA, Bueso MC, Fernández-Trujillo JP (2016) Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. J Sci Food Agric 96:2352–2365

    Article  CAS  PubMed  Google Scholar 

  36. Fredes A, Sales C, Barreda M, Valcárcel M, Roselló S, Beltrán J (2016) Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography-mass spectrometry determination. Food Chem 190:689–700

    Article  CAS  PubMed  Google Scholar 

  37. Ting VJ, Romano A, Silcock P, Bremer PJ, Corollaro ML, Soukoulis C, Cappellin L, Gasperi F, Biasioli F (2015) Apple flavor: Linking sensory perception to volatile release and textural properties. J Sens Stud 30:195–210

    Article  Google Scholar 

  38. Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2015) Comprehensive VOC profiling of an apple germplasm collection by PTR–ToF-MS. Metabolomics 11:838–850

    Article  CAS  Google Scholar 

  39. Burdock GA (2002) Fenaroli's handbook of flavor ingredients. CRC Press, Boca Raton

    Google Scholar 

  40. Baldwin EA, Nisperos-Carriedo M, Shaw PE, Burns JK (1995) Effect of coatings and prolonged storage conditions on fresh orange flavor volatiles, degree Brix, and ascorbic acid levels. J Agric Food Chem 43:1321–1331

    Article  CAS  Google Scholar 

  41. Friel EN, Wang M, Taylor A, MacRae EA (2007) In vitro and in vivo release of aroma compounds from yellow-fleshed kiwifruit. J Agric Food Chem 55:6664–6673

    Article  CAS  PubMed  Google Scholar 

  42. Baldwin EA, Goodner K, Plotto A (2008) Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. J Food Sci 73:294–307

    Article  CAS  Google Scholar 

  43. Priyanka D, Sindhoora S, Vijayanand P, Kulkarni SG, Nagarajan S (2015) Influence of thermal processing on the volatile constituents of muskmelon puree. J Food Sci Tech 52:3111–3116

    Article  CAS  Google Scholar 

  44. Pang X, Guo X, Qin Z, Yao Y, Hu X, Wu J (2012) Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. J Agric Food Chem 60:4179–4185

    Article  CAS  PubMed  Google Scholar 

  45. Tandon KS, Baldwin EA, Shewfelt RL (2000) Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biol Technol 20:261–268

    Article  CAS  Google Scholar 

  46. Malundo TMM, Shewfelt RL, Ware GO, Baldwin EA (2001) Sugars and acids influence flavor properties of mango (Mangifera indica). J Am Soc Hortic Sci 126:115–121

    Article  CAS  Google Scholar 

  47. Klee HJ, Tieman DM (2018) The genetics of fruit flavour preferences. Nat Rev Genet 19:347–356

    Article  CAS  PubMed  Google Scholar 

  48. Maoz I, Kaplunov T, Raban E, Dynkin I, Degani O, Lewinsohn E, Lichter A (2020) Insights into the chemosensory basis of flavor in table grapes. J Sci Food Agric 100:1405–1417

    Article  CAS  PubMed  Google Scholar 

  49. Kader A (1991) In: Dale A and Luby JJ (eds) The strawberry into the 21st. Timber Press, Portland

  50. Mehinagic E, Royer G, Bertrand D, Symoneaux R, Laurens F, Jourjon F (2003) Relationship between sensory analysis, penetrometry and visible-NIR spectroscopy of apples belonging to different cultivars. Food Qual Prefer 14:473–484

    Article  Google Scholar 

  51. Marsh KB, Friel EN, Gunson A, Lund C, MacRae E (2006) Perception of flavor in standardised fruit pulps with additions of acids or sugars. Food Qual Prefer 17:376–386

    Article  Google Scholar 

  52. Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, Lev S, Sa'ar U, Davidovitz-Rikanati R, Baranes N, Bar E, Wolf D, Petreikov M, Shen S, Ben-Dor S, Rogachev I, Aharoni A, Ast T, Schuldiner M, Belausov E, Eshed R, Ophir R, Sherman A, Frei B, Neuhaus HE, Xu Y, Fei Z, Giovannoni J, Lewinsohn E, Tadmor Y, Paris HS, Katzir N, Burger Y, Schaffer AA (2014) The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun 5:4026

    Article  CAS  PubMed  Google Scholar 

  53. Jordán MJ, Shaw PE, Goodner KL (2001) Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. J Agric Food Chem 49:5929–5933

    Article  PubMed  CAS  Google Scholar 

  54. Flavornet (2004) https://www.flavornet.org/flavornet.html. Accessed 15 April 2020

  55. The LRI and odour database https://www.odour.org.uk/lriindex.html. Accessed 15 April 2020

Download references

Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness, INIA—Project: RTA2011-00123-00-00, and by the Agency for the Research Centres of Catalonia (CERCA) of the Generalitat de Catalunya. Tiago Bianchi acknowledges the Ph.D. grant from the Spanish National Institute for Agricultural and Food Research and Technology (INIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hortós.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Quality indices determined among melon fruit types (N = 67): mean values and standard deviation in bracketsa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, T., Guerrero, L., Weesepoel, Y. et al. Linking sensory and proton transfer reaction–mass spectrometry analyses for the assessment of melon fruit (Cucumis melo L.) quality traits. Eur Food Res Technol 246, 1439–1457 (2020). https://doi.org/10.1007/s00217-020-03502-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03502-2

Keywords

Navigation