Skip to main content
Log in

The Equivariant Coarse Novikov Conjecture and Coarse Embedding

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The equivariant coarse Novikov conjecture provides an algorithm for determining nonvanishing of equivariant higher index of elliptic differential operators on noncompact manifolds. In this article, we prove the equivariant coarse Novikov conjecture under certain coarse embeddability conditions. More precisely, if a discrete group \(\Gamma \) acts on a bounded geometric space X properly, isometrically, and with bounded distortion, \(X/\Gamma \) and \(\Gamma \) admit coarse embeddings into Hilbert space, then the \(\Gamma \)-equivariant coarse Novikov conjecture holds for X. Here bounded distortion means that for any \(\gamma \in \Gamma \), \(\sup _{x\in Y} d(\gamma x,x)<\infty \), where Y is a fundamental domain of the \(\Gamma \)-action on X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum, P., Connes, A.: K-theory for discrete groups. In: Takesaki, M., Evens, D. (eds.) Operator Algebras and Applications, pp. 1–20. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and K-theory of group C\(^*\)-algebras. Contemp. Math. 167, 240–291 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Chen, X., Wang, Q., Yu, G.: The maximal coarse Baum–Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math. 249, 88–130 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  5. Dell’Aiera, C.: Controlled \(K\)-theory for groupoids & applications to Coarse Geometry. J. Funct. Anal. 275(7), 1756–1807 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Dixmier, J.: \(C^*\)-algebras. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  7. Fu, B., Wang, X.: The equivariant coarse Baum–Connes conjecture for spaces which admit an equivariant coarse embedding into Hilert space. J. Funct. Anal. 271(4), 799–832 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Fukaya, T., Oguni, S.: The coarse Baum–Connes conjecture for relatively hyperbolic groups. J. Topol. Anal. 4(1), 99–113 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Fukaya, T., Oguni, S.: Coronae of product spaces and the coarse Baum–Connes conjecture. Adv. Math. 279, 201–233 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Fukaya, T., Oguni, S.: The coarse Baum–Connes conjecture for Busemann nonpositively curved spaces. Kyoto J. Math. 56(1), 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Gong, G., Wang, Q., Yu, G.: Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math. 621, 159–189 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Gong, S., Wu, J., Yu, G.: The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert–Hadamard spaces. arXiv:1811.02086v3

  13. Gong, G., Yu, G.: Volume growth and positive scalar curvature. Geom. Funct. Anal. 10(4), 821–828 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Gromov, M.: Asymptotic invariants for infinite groups. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory, pp. 1–295. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  15. Guentner, E., Tessera, R., Yu, G.: Operator norm localization for linear groups and its applications to \(K\)-theory. Adv. Math. 226(4), 3495–3510 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Guentner, E., Willett, R., Yu, G.: Dynamical complexity and controlled operator \(K\)-theory. arXiv:1609.02093v2

  17. Higson, N.: Bivariant \(K\)-theory and the Novikov conjecture. Geom. Funct. Anal. 10(3), 563–581 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Higson, N., Guentner, E.: Group \(C^*\)-algebras and \(K\)-theory. Lect. Notes Math. 2004, 137–251 (1831)

    MATH  Google Scholar 

  19. Higson, N., Kasparov, G., Trout, J.: A Bott periodicity theorem for infinite dimensional Euclidean space. Adv. Math. 135(1), 1–40 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Higson, N., Roe, J.: On the Coarse Baum–Connes Conjecture, Novikov Conjectures, Index Theorems and Rigidity, Volume 2, London Mathematical Society Lecture Note Series, vol. 227, pp. 227–254. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  21. Kasparov, G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Kasparov, G., Skandalis, G.: Group acting properly on “bolic” spaces and the Novikov conjecture. Ann. Math. 158(1), 165–206 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Kasparov, G., Yu, G.: The Novikov conjecture and geometry of Banach spaces. Geom. Topol. 16(3), 1859–1880 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Oyono-Oyono, H., Yu, G.: \(K\)-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal. 257(10), 3239–3292 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Qiao, Y., Roe, J.: On the localization algebra of Guoliang Yu. Forum Math. 22(4), 657–665 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104, 1–90 (1993)

  27. Roe, J.: Index theory, coarse geometry and topology of manifolds. In: CBMS Regional Conference Series in Mathematics, American Mathematical Society, no. 90 (1996)

  28. Rosenberg, J.: \(C^*\)-algebras, positive scalar curvature, and the Novikov conjecture. Publ. Math. Inst. Hautes Études Sci. 58(1), 197–212 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Willett, R., Yu, G.: Higher index theory for certain expanders and Gromov monster group, I. Adv. Math. 229(3), 1380–1416 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Willett, R., Yu, G.: Higher index theory for certain expanders and Gromov monster group, II. Adv. Math. 229(3), 1762–1803 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Willett, R., Yu, G.: Higher Index Theory, Cambridge Studies in Advanced Mathematics, vol. 189. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  32. Skandalis, G., Tu, J.L., Yu, G.: The coarse Baum–Connes conjectrue and groupoids. Topology 41(4), 807–834 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Shan, L.: An equivariant higher index theory and non-positively curved manifold. J. Funct. Anal. 255(6), 1480–1496 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Shan, L., Wang, Q.: The coarse geometric Novikov conjecture for subspaces of non-positively curved manifolds. J. Funct. Anal. 248(2), 448–471 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Tang, X., Willett, R., Yao, Y.: Roe \(C^*\)-algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds. Math. Z. 290(3–4), 1309–1338 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Tu, J.L.: La conjecture de Baum–Connes pour les feuilletages moyennables. K-Theory 17(3), 215–264 (1999)

  37. Yu, G.: Coarse Baum–Connes conjecture. K-Theory 9(3), 199–221 (1995)

  38. Yu, G.: Localization algebras and the coarse Baum–Connes conjecture. K-Theory 11(4), 307–318 (1997)

  39. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees for many valuable and constructive suggestions. They also would like to thank Jintao Deng for many useful discussions, and for carefully reading the articles and making many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjin Wang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Benyin Fu is supported by NSFC (Nos. 11871342, 11771143). Xianjin Wang is supported by NSFC (No. 11771061). Guoliang Yu is supported by NSF (Nos. 1564398, 1700021) and NSFC (No. 11420101001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, B., Wang, X. & Yu, G. The Equivariant Coarse Novikov Conjecture and Coarse Embedding. Commun. Math. Phys. 380, 245–272 (2020). https://doi.org/10.1007/s00220-020-03754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03754-9

Navigation