Skip to main content
Log in

Temperley–Lieb Quantum Channels

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a class of quantum channels arising from the representation theory of compact quantum groups that we call Temperley–Lieb quantum channels. These channels simultaneously extend those introduced by Brannan and Collins (Commun Math Phys 358(3):1007–1025, 2018), Nuwairan (Int J Math 25(6):1450048, 2014) and Lieb and Solovej (Acta Math 212(2):379–398, 2014). (Quantum) Symmetries in quantum information theory arise naturally from many points of view, providing an important source of new examples of quantum phenomena, and also serve as useful tools to simplify or solve important problems. This work provides new applications of quantum symmetries in quantum information theory. Among others, we study entropies and capacitites of Temperley–Lieb channels, their (anti-) degradability, PPT and entanglement breaking properties, as well as the behaviour of their tensor products with respect to entangled inpurs. Finally we compare the Tempereley–Lieb channels with the (modified) TRO-channels recently introduced by Gao et al. (Commun Math Phys 364(1):83–121, 2018)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The term “trace” comes from the fact that under the fiber functor \(\text {TL}(d) \rightarrow \text {Rep}(O^+_F)\), \(\tau _k\) corresponds to the well-known Markov trace \(\tau _k:\text {TL}_{k,k}(d) \rightarrow \mathbb {C}\) obtained by tracial closure of Temperley–Lieb diagrams [KL94].

References

  1. Nuwairan, M.A.: Potential examples for non-additivity of the minimal output entropy. Preprint, arXiv:1312.2200, (2013)

  2. Nuwairan, M.A.: The extreme points of SU(2)-irreducibly covariant channels. Int. J. Math. 25(6), 1450048 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Audenaert, K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A 40(28), 8127–8136 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Banica, T.: Théorie des représentations du groupe quantique compact libre \({\rm O}(n)\). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Banica, T.: Le groupe quantique compact libre \({\rm U}(n)\). Commun. Math. Phys. 190(1), 143–172 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Brannan, M., Collins, B.: Entanglement and the Temperley–Lieb category. Adv. Stud. Pure Math. (preprint, to appear) (2017)

  7. Brannan, M., Collins, B.: Highly entangled, non-random subspaces of tensor products from quantum groups. Commun. Math. Phys. 358(3), 1007–1025 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A.: Capacities of quantum erasure channels. PRL 78(16), 3217–3220 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bohm, A.: Quantum Mechanics: Foundations and Applications. Texts and Monographs in Physics, Prepared with Mark Loewe, 3rd edn. Springer, New York (2001)

    MATH  Google Scholar 

  10. Carter, J.S., Flath, D.E., Saito, M.: The Classical and Quantum 6\(j\)-Symbols. Volume 43 of Mathematical Notes. Princeton University Press, Princeton (1995)

    Google Scholar 

  11. Collins, B., Osaka, H., Sapra, G.: On a family of linear maps from \(M_n(\mathbb{C})\) to \(M_{n^2}(\mathbb{C})\). Linear Algebra Appl. 555, 398–411 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Datta, N., Fukuda, M., Holevo, A.S.: Complementarity and additivity for covariant channels. Quantum Inf. Process. 5(3), 179–207 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Gao, L., Junge, M., LaRacuente, N.: Capacity estimates via comparison with TRO channels. Commun. Math. Phys. 364(1), 83–121 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009)

    Google Scholar 

  16. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Haagerup, U., Musat, M.: An asymptotic property of factorizable completely positive maps and the Connes embedding problem. Commun. Math. Phys. 338(2), 721–752 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Holevo, A.S.: The additivity problem in quantum information theory. In: International Congress of Mathematicians. Vol. III, pp. 999–1018. Eur. Math. Soc., Zürich, (2006)

  19. Holevo, A.S.: Quantum Systems, Channels, Information, Volume 16 of De Gruyter Studies in Mathematical Physics. De Gruyter, Berlin. A Mathematical Introduction (2012)

  20. Jones, V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Kauffman, L.H., Lins, S.L.: Temperley–Lieb recoupling theory and invariants of \(3\)-manifolds. In: Annals of Mathematics Studies, Vol. 134. Princeton University Press, Princeton, NJ (1994)

  22. Koenig, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103(7), 070504 (2009)

    ADS  Google Scholar 

  23. Lieb, E.H., Solovej, J.P.: Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Math. 212(2), 379–398 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1), 015202 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Marvian, I., Spekkens, R.W.: Asymmetry properties of pure quantum states. Phys. Rev. A 90(1), 014102 (2014)

    ADS  Google Scholar 

  26. Mozrzymas, M., Studziński, M., Datta, N.: Structure of irreducibly covariant quantum channels for finite groups. J. Math. Phys. 58(5), 052204 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Mendl, C.B., Wolf, M.M.: Unital quantum channels–convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Nachtergaele, B., Ueltschi, D.: A direct proof of dimerization in a family of \(SU(n)\)-invariant quantum spin chains. Lett. Math. Phys. 107(9), 1629–1647 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Ritter, W.G.: Quantum channels and representation theory. J. Math. Phys. 46(8), 082103 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Schliemann, J.: Entanglement in \({\rm SU}(2)\)-invariant quantum systems: the positive partial transpose criterion and others. Phys. Rev. A 72((1)), 012307 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Shor, P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. (Quantum Information Theory) 43(9), 4334–4340 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Shor, P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Sanz, M., Wolf, M.M., Perez-García, D., Cirac, J.I.: Matrix product states: symmetries and two-body hamiltonians. Phys. Rev. A 79(4), 042308 (2009)

    ADS  Google Scholar 

  35. Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Vilenkin, N.J., Klimyk, A.U.: Representation of Lie groups and special functions, volume 316 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht. Recent advances, Translated from the Russian manuscript by V.A. Groza, A.A. Groza (1995)

  38. Vaes, S., Vergnioux, R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Wenzl, H.: On sequences of projections. C. R. Math. Rep. Acad. Sci. Can. 9(1), 5–9 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Werner, R.F., Holevo, A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. (Quantum Information Theory) 43(9), 4353–4357 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Wilde, M.M.: Quantum Information Theory, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

MB’s research was supported by NSF Grant DMS-1700267. BC’s research was supported by JSPS KAKENHI 17K18734, 17H04823, 15KK0162. HHL and SY’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant NRF-2017R1E1A1A03070510 and the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (Grant No. 2017R1A5A1015626). SY’s research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01009681). The authors are grateful to Marius Junge for useful comments and discussons during various stages of preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Gyun Youn.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brannan, M., Collins, B., Lee, H.H. et al. Temperley–Lieb Quantum Channels. Commun. Math. Phys. 376, 795–839 (2020). https://doi.org/10.1007/s00220-020-03731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03731-2

Navigation