Skip to main content
Log in

Simulations of NMR Relaxation in a Real Porous Structure: Pre-asymptotic Behavior to the Localization Regime

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The knowledge of the different physical mechanisms determining the relaxation of the magnetization is crucial to obtain reliable petrophysical parameters from NMR experiments. Some studies have focused on asymptotic mechanisms providing simple expressions for the relaxation rate in terms of parameters of the system. The main difficulties in solving this problem are related to the existence of intrinsic magnetic inhomogeneities, in addition to the complex structure of the porous geometry found in real systems. In this work, simulations of the relaxation of the transverse magnetization were performed on a real pore structure obtained from X-ray microtomography images. Also, a statistical method was used to introduce a local magnetic non-homogeneity, resembling local field distributions discussed in several works in the literature. The conditions of our simulations allowed the study of relaxation processes mainly influenced by local magnetic gradients, while surface relaxation became irrelevant. The dependence of the relaxation rate on the inter-echo spacing was studied, where for low spacings, the results reproduced those expected in the free-diffusion limit. On the other hand, for high inter-echo spacings, the relaxation rate deviates from the expected dependence, indicating the emergence of a new relaxation mechanism. This high-spacing behavior was associated with a pre-asymptotic localization regime. Our data suggest a logarithmic dependence of the relaxation rate with the inter-echo spacing in this transition regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993)

    Article  ADS  Google Scholar 

  2. Y.Q. Song, N. J. Phys. 14, 055017 (2012)

    Article  Google Scholar 

  3. G.R. Coates, L. Xiao, M.G. Prammer, NMR Logging Principles and Applications (Halliburton Energy Services, Gulf Publishing Company, Houston, 1999)

    Google Scholar 

  4. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954)

    Article  ADS  Google Scholar 

  5. W.E. Kenyon, Log Anal. 38, 21 (1997)

    Google Scholar 

  6. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19, 2446 (1979)

    Article  ADS  Google Scholar 

  7. P. Bendel, J. Magn. Reson. 86, 509 (1990)

    ADS  Google Scholar 

  8. M.D. Hurlimann, J. Magn. Reson. 131, 232 (1998)

    Article  ADS  Google Scholar 

  9. J. Mitchell, T.C. Chandrasekera, M.L. Johns, L.F. Gladden, E.J. Fordham, Phys. Rev. E 81, 026101 (2010)

    Article  ADS  Google Scholar 

  10. D. Grombacher, E. Fay, M. Nordin, R. Knight, Geophysics 81, EN43 (2016)

    Article  Google Scholar 

  11. R.M.E. Valckenborg, H.P. Huinink, J.J. van der Sande, K. Kopinga, Phys. Rev. E 65, 021306 (2002)

    Article  ADS  Google Scholar 

  12. M.D. Hurlimann, K.G. Helmer, T.M. de Swiet, P.N. Sen, C.H. Sotak, J. Magn. Reson. 113, 260 (1995)

    Article  ADS  Google Scholar 

  13. P.R. Connolly, S.J. Vogt, S. Iglauer, E.F. May, M.L. Johns, Water Resour. Res. 53, 7917 (2017)

    Article  ADS  Google Scholar 

  14. L.J. Zielinski, P.N. Sen, J. Magn. Reson. 147, 95 (2000)

    Article  ADS  Google Scholar 

  15. Q. Chen, A.E. Marble, B.G. Colpitts, B.J. Balcom, J. Magn. Reson. 175, 300 (2005)

    Article  ADS  Google Scholar 

  16. P.R.J. Connolly, W. Yan, D. Zhang, M. Mahmoud, M. lVerrall, M. Lebedev, S. Iglauer, P.J. Metaxas, E.F. May, M.L. Johns, J. Petrol. Sci. Eng. 175, 985 (2019)

  17. R. Valiullin, ed., Diffusion NMR of Confined Systems. Fluid Transport in Porous Solids and Heterogeneous Materials (RSC Publishing, Cambridge, 2016)

  18. E.J. Fordham, J. Mitchell, Microporous Mesoporous Mater. 269, 35 (2018)

    Article  Google Scholar 

  19. N. Moutal, K. Demberg, D. Grebenkov, T.A. Kuder, J. Magn. Reson. 305, 162–174 (2019)

    Article  ADS  Google Scholar 

  20. J.L. Gonzalez, E.L. de Faria, M.P. Albuquerque, M.P. Albuquerque, C.R. de Bom, J.C.C. Freitas, C.W. Cremasco, M.D. Correia, J. Petrol. Sci. Eng. 166, 906 (2018)

    Article  Google Scholar 

  21. S. Schluter, A. Sheppard, K. Brown, D. Wildenschild, Water Resour. Res. 50, 3615 (2014)

    Article  ADS  Google Scholar 

  22. C.H. Arns, T. AlGhamdi, J.-Y. Arns, N. J. Phys. 13, 015004 (2011)

    Article  Google Scholar 

  23. D.A. Clark, D.W. Emerson, Explor. Geophys. 22, 547 (1991)

    Article  Google Scholar 

  24. B. Sun, K.J. Dunn, Phys. Rev. E 65, 051309 (2002)

    Article  ADS  Google Scholar 

  25. K.S. Mendelson, Phys. Rev. B 41, 562 (1990)

    Article  ADS  Google Scholar 

  26. M. Leibig, J. Phys. A 26, 3349 (1993)

    Article  ADS  Google Scholar 

  27. J. Finjord, A. Hiorth, H. Unn, S.M. Skjæveland, Transp. Porous Med. 69, 33 (2007)

    Article  Google Scholar 

  28. J. Guo, R. Xie, Y. Zou, Y. Ding, J. Geophys. Eng. 13, 285 (2016)

    Article  Google Scholar 

  29. D.J. Bergman, K.J. Dunn, L.M. Schwartz, P.P. Mitra, Phys. Rev. E 51, 3393 (1995)

    Article  ADS  Google Scholar 

  30. E. Lucas-Oliveira, A.G. Araujo-Ferreira, W.A. Trevizan, C.A. Fortulan, T.J. Bonagamba, J. Magn. Reson. 292, 16 (2018)

    Article  ADS  Google Scholar 

  31. C.H. Arns, A.P. Sheppard, R.M. Sok, M.A. Knackstedt, Petrophysics 48, 202 (2007)

    Google Scholar 

  32. I.J. Day, J. Magn. Reson. 211, 178 (2011)

    Article  ADS  Google Scholar 

  33. S. Torquato, Annu. Rev. Mater. Res. 32, 77 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by cooperation agreement between CENPES PETROBRAS and CBPF (cooperation agreement 5850.0106789.18.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gonzalez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, J.L., de Faria, E.L., Albuquerque, M.P. et al. Simulations of NMR Relaxation in a Real Porous Structure: Pre-asymptotic Behavior to the Localization Regime. Appl Magn Reson 51, 581–595 (2020). https://doi.org/10.1007/s00723-020-01200-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01200-6

Navigation