Skip to main content

Advertisement

Log in

Automated Pressurized Liquid Extraction of Microbial Lipids from Oleaginous Yeasts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The lipids produced by oleaginous microbes are considered sustainable resources for biofuels. To facilitate controlled lipid production and lipid analysis, more efficient lipid extraction methods are required. This study describes the automated pressurized liquid extraction (APLE) method for lipid extraction from dried cells of the oleaginous yeast species Rhodosporidium toruloides and Cryptococcus curvatus. Cells were mixed with diatomite in a mortar, added to the sample chamber, and treated with a mixture of chloroform and methanol at 105 °C. More than 95% lipids were extracted. Analysis by using high-performance thin-layer chromatography showed that the neutral lipid contents in the obtained samples by APLE method were similar to those by the ball milling–assisted extraction method. The lipids had an essentially identical fatty acid composition compared with lipids extracted with the acid-heating extraction (AHE) method. This demonstrated that lipids can be efficiently extracted from oleaginous yeasts in less time and without harsh pretreatment procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spagnuolo, M., Yaguchi, A., & Blenner, M. (2019). Oleaginous yeast for biofuel and oleochemical production. Current Opinion in Biotechnology, 57, 73–81.

    Article  CAS  Google Scholar 

  2. Sanchez i, N., Violeta, B., Brenna, A., Kruger, J. S., Singer, C. A., Ramirez, K. J., Reed, M. L., Cleveland, N. S., Singer, E. R., Yi, X., Yeap, R. Y., Linger, J. G., & Beckham, G. T. (2018). Integrated diesel production from lignocellulosic sugars via oleaginous yeast. Green Chemistry, 20, 4349–4365.

    Article  Google Scholar 

  3. Dong, T., Knoshaug, E. P., Pienkos, P. T., & Laurens, L. M. L. (2016). Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Applied Energy, 177, 879–895.

    Article  CAS  Google Scholar 

  4. Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.

    Article  Google Scholar 

  5. Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renewable and Sustainable Energy Reviews, 107, 87–107.

    Article  CAS  Google Scholar 

  6. Sati, H., Mitra, M., Mishra, S., & Baredar, P. (2019). Microalgal lipid extraction strategies for biodiesel production: a review. Algal Research, 38, 101413.

    Article  Google Scholar 

  7. Ashokkumar, V., Chen, W.-H., Ngamcharussrivichai, C., Agila, E., & Ani, F. N. (2019). Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale – a low cost biorefinery approach. Energy Conversion and Management, 186, 188–199.

    Article  CAS  Google Scholar 

  8. Ido, A. L., de Luna, M. D. G., Capareda, S. C., Maglinao, A. L., & Nam, H. (2018). Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction. Energy, 157, 949–956.

    Article  CAS  Google Scholar 

  9. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154.

    Article  CAS  Google Scholar 

  10. Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system - design, optimization, and quality characterization. Bioresource Technology, 102(3), 3396–3403.

    Article  CAS  Google Scholar 

  11. Jin, G., Yang, F., Hu, C., Shen, H., & Zhao, Z. K. (2012). Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 111, 378–382.

    Article  CAS  Google Scholar 

  12. Masri, M. A., Garbe, D., Mehlmer, N., & Brück, T. B. (2019). A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents. Energy & Environmental Science, 12(9), 2717–2732.

    Article  CAS  Google Scholar 

  13. Deshmukh, S., Kumar, R., & Bala, K. (2019). Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology, 191, 232–247.

    Article  CAS  Google Scholar 

  14. Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: a technique for sample preparation. Analytical Chemistry, 68(6), 1033–1039.

    Article  CAS  Google Scholar 

  15. Ali, M., & Watson, I. A. (2015). Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renewable Energy, 76, 470–477.

    Article  CAS  Google Scholar 

  16. Ligor, M., Ratiu, I.-A., Kielbasa, A., Al-Suod, H., & Buszewski, B. (2018). Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis, 39(15), 1860–1874.

    Article  CAS  Google Scholar 

  17. Rodrigues, E. T., Pardal, M. A., Salgueiro-Gonzalez, N., Muniategui-Lorenzo, S., & Alpendurada, M. F. (2016). A single-step pesticide extraction and clean-up multi-residue analytical method by selective pressurized liquid extraction followed by on-line solid phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for complex matrices. Journal of Chromatography A, 1452, 10–17.

    Article  CAS  Google Scholar 

  18. Wang, Y., Chen, J., Li, Z., Wang, S., Shi, Q., Cao, W., Zheng, X., Sun, C., Wang, X., & Zheng, L. (2015). Determination of typical lipophilic marine toxins in marine sediments from three coastal bays of China using liquid chromatography-tandem mass spectrometry after accelerated solvent extraction. Marine Pollution Bulletin, 101(2), 954–960.

    Article  CAS  Google Scholar 

  19. Klees, M., Bogatzki, C., & Hiester, E. (2016). Selective pressurized liquid extraction for the analysis of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in soil. Journal of Chromatography A, 1468, 10–16.

    Article  CAS  Google Scholar 

  20. Luo, Q., Wang, S., Sun, L.-n., & Wang, H. (2018). Simultaneous accelerated solvent extraction and purification for the determination of 13 organophosphate esters in soils by gas chromatography-tandem mass spectrometry. Environmental Science and Pollution Research, 25(20), 19546–19554.

    Article  CAS  Google Scholar 

  21. Augusti, D. V., Magalhaes, E. J., Nunes, C. M., dos Santos, E. V., Dardot Prates, R. G., & Pissinatti, R. (2014). Method validation and occurrence of dioxins and furans (PCDD/Fs) in fish from Brazil. Analytical Methods, 6(6), 1963–1969.

    Article  CAS  Google Scholar 

  22. Choi, M., Lee, I.-S., & Jung, R.-H. (2016). Rapid determination of organochlorine pesticides in fish using selective pressurized liquid extraction and gas chromatography-mass spectrometry. Food Chemistry, 205, 1–8.

    Article  CAS  Google Scholar 

  23. Zhao, X., Cui, T., Guo, R., Liu, Y., Wang, X., An, Y.-X., Qiao, X., & Zheng, B. (2019). A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Analytica Chimica Acta, 1047, 71–80.

    Article  CAS  Google Scholar 

  24. Cescut, J., Severac, E., Molina-Jouve, C., & Uribelarrea, J. L. (2011). Optimizing pressurized liquid extraction of microbial lipids using the response surface method. Journal of Chromatography A, 1218(3), 373–379.

    Article  CAS  Google Scholar 

  25. He, Y., Huang, Z., Zhong, C., Guo, Z., & Chen, B. (2019). Pressurized liquid extraction with ethanol as a green and efficient technology to lipid extraction of Isochrysis biomass. Bioresource Technology, 293, 122049.

    Article  CAS  Google Scholar 

  26. Milanesio, J., Hegel, P., Medina-Gonzalez, Y., Camy, S., & Condoret, J.-S. (2013). Extraction of lipids from Yarrowia lipolytica. Journal of Chemical Technology and Biotechnology, 88(3), 378–387.

    Article  CAS  Google Scholar 

  27. Dai, X., Shen, H., Li, Q., Rasool, K., Wang, Q., Yu, X., Wang, L., Bao, J., Yu, D., & Zhao, Z. (2019). Microbial lipid production from corn stover by the oleaginous yeast Rhodosporidium toruloides using the PreSSLP process. Energies, 12(6), 1053–1063.

    Article  CAS  Google Scholar 

  28. Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6, 1–10.

    Article  Google Scholar 

  29. Wei, Y. S., & Sadus, R. J. (2000). Equations of state for the calculation of fluid-phase equilibria. AICHE Journal, 46(1), 169–196.

    Article  CAS  Google Scholar 

  30. Yoon, K., Han, D., Li, Y., Sommerfeld, M., & Hu, Q. (2012). Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell, 24(9), 3708–3724.

    Article  CAS  Google Scholar 

  31. Schafer, K. (1998). Accelerated solvent extraction of lipids for determining the fatty acid composition of biological material. Analytica Chimica Acta, 358(1), 69–77.

    Article  CAS  Google Scholar 

  32. Giergielewicz-Mozajska, H., Dabrowski, L., & Namiesnik, J. (2001). Accelerated solvent extraction (ASE) in the analysis of environmental solid samples - some aspects of theory and practice. Critical Reviews in Analytical Chemistry, 31(3), 149–165.

    Article  CAS  Google Scholar 

  33. Yang, X., Jin, G., Gong, Z., Shen, H., Bai, F., & Zhao, Z. K. (2014). Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochemical Engineering Journal, 91, 86–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Zongbao K. Zhao for expert opinion and consultation of Dr. Hongwei Shen for help on experimental design, Mr. Xiao Liu for assistance on APLE, and Mr. Xiaozan Dai for providing the raw material. We would like to express thanks to Energy Biotechnology Platform of Dalian Institute of Chemical Physics, CAS.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51761145014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qitian Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Automated pressurized liquid extraction was used to extract lipids directly.

2. Almost 100% lipids were extracted from oleaginous yeasts within 40 min.

3. Fatty acid profiles of lipids are identical to those reported in the literature.

4. This method is valuable for microbial lipid analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Kamal, R., Chu, Y. et al. Automated Pressurized Liquid Extraction of Microbial Lipids from Oleaginous Yeasts. Appl Biochem Biotechnol 192, 283–295 (2020). https://doi.org/10.1007/s12010-020-03331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03331-9

Keywords

Navigation