Skip to main content

Advertisement

Log in

An Instrumented Urethral Catheter with a Distributed Array of Iontronic Force Sensors

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper develops a novel instrumented urethral catheter with an array of force sensors for measuring the distributed pressure in a human urethra. The catheter and integrated portions of the force sensors are fabricated by the use of 3D printing using a combination of both soft and hard polymer substrates. Other portions of the force sensors consisting of electrodes and electrolytes are fabricated separately and assembled on top of the 3D-printed catheter to create a soft flexible device. The force sensors use a novel supercapacitive (iontronic) sensing mechanism in which the contact area between a pair of electrodes and a paper-based electrolyte changes in response to force. This provides a highly sensitive measure of force that is immune to parasitic noise from liquids. The developed catheter is tested using a force calibration test rig, a cuff-based pressure application device, an extracted bladder and urethra from a sheep and by dipping inside a beaker of water. The force sensors are found to have a sensitivity of 30–50 nF/N, which is 1000 times larger than that of traditional capacitive force sensors. They exhibit negligible capacitance change when dipped completely in water. The pressure cuff tests and the extracted sheep tissue tests also verify the ability of the sensor array to work reliably in providing distributed force measurements. The developed catheter could help diagnose ailments related to urinary incontinence and inadequate urethral closure pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abrams, P., J. G. Blaivas, S. L. Stanton, and J. T. Anderson. The standardization of terminology of lower urinary tract function recommended by the international continence society. Int. Urogynecol. J. 1:45–58, 1990.

    Article  Google Scholar 

  2. Ahmadi, M., R. Rajamani, and S. Sezen. Transparent flexible active faraday cage enables in vivo capacitance measurement in assembled microsensor. IEEE Sens. Lett. 1:289–313, 2017.

    Article  Google Scholar 

  3. Ahmadi, M., R. Rajamani, G. Timm, and A. S. Sezen. Flexible distributed pressure sensing strip for a urethral catheter. J. Microelectromech. Syst. 24:1840–1847, 2015.

    Article  CAS  Google Scholar 

  4. Ahmadi, M., R. Rajamani, G. Timm, and S. Sezen. Instrumented urethral catheter and its ex vivo validation in a sheep urethra. Meas. Sci. Technol. 28:1–10, 2017.

    Article  CAS  Google Scholar 

  5. Conway, B. E. Electrochemical Supercapacitors. New York: Springer, p. 714, 1999.

    Book  Google Scholar 

  6. Dario, P., D. Femi, and F. Vivaldi. Fiber-optic catheter-tip sensor based on the photoelastic effect. Sens. Actuator 12:5–47, 1987.

    Article  Google Scholar 

  7. Diokno, A. C., B. M. Brock, M. B. Brown, and A. R. Herzog. Prevalence of urinary incontinence and other urological symptoms in the noninstitutionalized elderly. J. Urol. 136:1021–1025, 1986.

    Article  Google Scholar 

  8. Esashi, M., H. Komatsu, T. Matsuo, M. Takahashi, T. Takishima, K. Imabayashi, and H. Ozawa. Fabrication of catheter-tip and sidewall miniature pressure sensors. IEEE Trans. Electron. Dev. 29:57–63, 1982.

    Article  Google Scholar 

  9. Feneley, R. C. L., I. B. Hopley, and P. N. T. Wells. Urinary catheters: history, current status, adverse events and research agenda. J. Med. Eng. Technol. 39:459–470, 2015.

    Article  Google Scholar 

  10. Feneley, R. C. L., A. M. Sheperd, P. H. Powell, and J. Blannin. Urinary incontinence: prevalence and needs. Br. J. Urol. 51:493–496, 1979.

    Article  CAS  Google Scholar 

  11. French, P. J., D. Tanase, and J. F. L. Goosen. Sensors for catheter applications. In: Sensors Applications. 2008, pp. 339–380.

  12. Hannestad, Y. S., G. Rortveit, H. Sandvik, and S. Hunskaar. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. Epidemiology of Incontinence in the County of Nord-Trøndelag. J. Clin. Epidemiol. 53:1150–1157, 2000.

    Article  CAS  Google Scholar 

  13. Herzog, A. R., and N. H. Fultz. Prevalence and incidence of urinary incontinence in community-dwelling populations. J. Am. Geriatr. Soc. 38:273–281, 1990.

    Article  CAS  Google Scholar 

  14. Jin, M. L., S. Park, Y. Lee, J. H. Lee, J. Chung, J. S. Kim, J. S. Kim, S. Y. Kim, E. Jee, D. W. Kim, J. W. Chung, S. G. Lee, D. Choi, H. T. Jung, and D. H. Kim. An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian merkel cells. Adv. Mater. 29:1–9, 2017.

    Google Scholar 

  15. Li, R., Y. Si, Z. Zhu, Y. Guo, Y. Zhang, N. Pan, G. Sun, and T. Pan. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29:1–8, 2017.

    Google Scholar 

  16. Malik, P. Grossman’s cardiac catheterization, angiography, and intervention. Can. J. Cardiol. 23:602, 2007.

    Article  Google Scholar 

  17. Medtronic. Manoscan ESO high resolution manometry system. https://www.medtronic.com/covidien/en-us/products/motility-testing/manoscan-eso-high-resolution-manometry-system.html#manoscan-eso-high-resolution-manometry-catheters.

  18. Meena, K. V., R. Mathew, and A. R. Sankar. Design and optimization of a three-terminal piezoresistive pressure sensor for catheter based in vivo biomedical applications. Biomed. Phys. Eng. Express 3:045003, 2017.

    Article  Google Scholar 

  19. Nawi, M. N. M., A. A. Manaf, M. F. A. Rahman, M. R. Arshad, and O. Sidek. One-side-electrode-type fluidic-based capacitive pressure sensor. IEEE Sens. J. 15:1738–1746, 2015.

    Article  CAS  Google Scholar 

  20. Nie, B., R. Li, J. Cao, J. D. Brandt, and T. Pan. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27:6055–6062, 2015.

    Article  CAS  Google Scholar 

  21. Nie, B., S. Xing, J. Brant, and T. Pan. Droplet-based interfacial capacitive sensing. Lab Chip 12:1110–1118, 2012.

    Article  CAS  Google Scholar 

  22. Nygaard, I., T. Girts, N. H. Fultz, K. Kinchen, G. Pohl, and B. Sternfeld. Is urinary incontinence a barrier to exercise in women? Obstet. Gynecol. 106:304–314, 2005.

    Google Scholar 

  23. Otmani, R., N. Benmoussa, and B. Benyoucef. The thermal drift characteristics of piezoresistive pressure sensor. Phys. Procedia 21:47–52, 2011.

    Article  CAS  Google Scholar 

  24. Rafii-Tari, H., C. J. Payne, and G.-Z. Yang. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann. Biomed. Eng. 42:697–715, 2014.

    Article  Google Scholar 

  25. Resplande, J., S. Gholami, H. Bruschini, and M. Srougi. Urodynamic changes induced by the intravaginal electrode during pelvic floor electrical stimulation. Neurourol. Urodyn. 22:24–28, 2003.

    Article  Google Scholar 

  26. Schafer, W., P. Abrams, L. Liao, A. Mattiasson, F. Pesce, A. Spangberg, A. Sterling, N. R. Zinner, and P. Kerrebroeck. Good urodynamic practices: uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol. Urodyn. 21:261–274, 2002.

    Article  Google Scholar 

  27. Sharma, T., K. Aroom, S. Naik, B. Gill, and J. X. J. Zhang. Flexible Thin-Film PVDF-TrFE Based Pressure Sensor for Smart Catheter Applications. Ann. Biomed. Eng. 41:744–751, 2013.

    Article  Google Scholar 

  28. Taufik, M., and P. Jain. Role of build orientation in layered manufacturing: a review. Int. J. Manuf. Technol. Manag. 27:47–73, 2014.

    Article  Google Scholar 

  29. Thom, D. H., M. N. Haan, and S. K. Van Den Eeden. Medically recognized urinary incontinence and risks of hospitalization, nursing home admission and mortality. Age Ageing 26:367–374, 1997.

    Article  CAS  Google Scholar 

  30. Van Oyen, H., and P. Van Oyen. Urinary incontinence in belgium: prevalence, correlates and psychosocial consequences. Acta Clin. Belg. 57:207–218, 2002.

    Article  Google Scholar 

  31. Wagner, T. H., and T.-W. Hu. Economic costs of urinary incontinence in 1995. Urology 51:355–361, 1998.

    Article  CAS  Google Scholar 

  32. Webb, R. J., P. D. Ramsden, and D. E. Neal. Ambulatory monitoring and electronic measurement of urinary leakage in the diagnosis of detrusor instability and incontinence. Obstet. Gynecol. Surv. 47:148–152, 1992.

    Article  Google Scholar 

  33. Wu, X., M. Hu, J. Shen, and Q. Ma. A miniature piezoresistive catheter pressure sensor. Sens. Actuat: A 35:197–201, 1993.

    Article  Google Scholar 

  34. Yarnell, J. W. G., and A. S. StLeger. The prevalence, severity and factors associated with urinary incontinence in a random sample of the elderly. Age Ageing 8:81–85, 1979.

    Article  CAS  Google Scholar 

  35. Zhang, Y., R. Rajamani, and S. Sezen. Novel supercapacitor-based force sensor insensitive to parasitic noise. IEEE Sens. Lett. 1:2–5, 2017.

    Article  Google Scholar 

  36. Zhang, Y., S. Sezen, M. Ahmadi, X. Cheng, and R. Rajamani. Paper-based supercapacitive mechanical sensors. Sci. Rep. 8:16284, 2018.

    Article  Google Scholar 

  37. Zhang, Z., Z. Zhu, B. Bazor, S. Lee, Z. Ding, and T. Pan. FeetBeat: a flexible iontronic sensing wearable detects pedal pulses and muscular activities. IEEE Trans. Biomed. Eng. 66:3072–3079, 2019.

    Article  Google Scholar 

  38. Zhu, Z., R. Li, and T. Pan. Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 30:1–9, 2018.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Mn-Reach, a NIH research Evaluation and Commercialization Hub, and by the National Science Foundation through Grant EFRI 1830958.

Conflict of interest

A portion of the work reported in this paper has been protected through a patent filing. The pending patent will belong to the University of Minnesota which has a standard royalty sharing agreement with university employees, in case any royalties are earned from the licensing of said patent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Rajamani.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ahmadi, M., Timm, G. et al. An Instrumented Urethral Catheter with a Distributed Array of Iontronic Force Sensors. Ann Biomed Eng 49, 149–161 (2021). https://doi.org/10.1007/s10439-020-02528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02528-7

Keywords

Navigation