Skip to main content

Advertisement

Log in

Environmental drivers that influence microalgal species in meltwater pools on the McMurdo Ice Shelf, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Rich in both microbial mat biomass and species diversity, the meltwater ponds of the McMurdo Ice Shelf (MIS) form important biodiversity and productivity elements in an otherwise barren landscape. These ponds are thought to be sensitive indicators of climate change-driven fluxes in pond water balance but our ability to predict such effects is confounded by our poor understanding of the inherent variability of these communities in response to the physico-chemical environment. Understanding how microbial communities are shaped across broad physico-chemical gradients may allow better predictions of the effects of climate change on the MIS wetlands. Our study found that distinct clustering of community types against environmental variables was apparent for both the diatom and cyanobacterial communities. For diatoms, conductivity was correlated with the separation of five significantly distinct communities. Significant differences in NH4–N concentrations were correlated to the three distinct cyanobacterial communities but many of the cyanobacteria morphotypes were recorded across a wide ecological range. More distinct community types suggested that diatoms were more sensitive to environmental change in these ponds than the cyanobacteria, despite the latter’s overall dominance. Distinct community clusters for diatoms, and to a lesser extent cyanobacteria, suggest that changes at a functional group level may be more important than at the level of individual species. Further understanding of diatom functional groups would provide us with the opportunity to hindcast past climates and water budgets within the Antarctic region. However, the disconnect between biomass and community composition currently prevents hindcasting past productivities in relation to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the analysis of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE (2002) Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470:219–234

    Article  Google Scholar 

  • Barber HG, Haworth EY (1981) A guide to the morphology of the diatom frustule. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Borovec J, Sirová D, Mošnerová P, Rejmánková E, Vrba J (2010) Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry 101(1–3):323–333

    Article  CAS  Google Scholar 

  • Boston HL, Hill WR (1991) Photosynthesis–light relations of stream periphyton communities. Limnol Oceanogr 36(4):644–656

    Article  CAS  Google Scholar 

  • Broady P, Kibblewhite A (1991) Morphological characterization of Oscillatoria (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct Sci 3:35–45

    Article  Google Scholar 

  • Calhoun DL, Gregory MB, Weyers HS (2008) Algal and invertebrate community composition along agricultural gradients: a comparative study from two regions of the eastern United States (No. 2008-5046). Geological Survey (US), Reston

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities. An approach to statistical analysis and interpretation, 2nd edn. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Bio Ecol 366(1–2):56–69

    Article  Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, John MSS, Green FB, Oswald WJ (1996) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33(7):191–198

    Article  CAS  Google Scholar 

  • Cremer H, Gore D, Hultzsch N, Melles M, Wager B (2004) The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biol 27:513–531

    Article  Google Scholar 

  • de Mora SJ, Whitehead RF, Gregory M (1994) The chemical composition of glacial melt water ponds and streams on the McMurdo Ice Shelf, Antartica. Antarct Sci 6(1):17–27

    Article  Google Scholar 

  • Dodds WK (2003) Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J North Am Benthol Soc 22(2):171–181

    Article  Google Scholar 

  • Doran PT, McKay CP, Fountain AG, Nylen T, McKnight DM, Jaros C, Barrett JE (2008) Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antartica. Antarct Sci 20(5):499–509

    Article  Google Scholar 

  • Downes M (2001) NIWA Christchurch auto-analyser methods. NIWA Internal Report No. 103. NIWA, Christchurch, New Zealand.

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Esposito RMM, Spaulding SA, McKnight DM, Van deVijver B, Kopalová K, Lubinski D, Hall B, Whittaker T (2008) Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Botany 86:1378–1392

    Article  Google Scholar 

  • Gibson JA, Roberts D, Van de Vijver B (2006) Salinity control of the distribution of diatoms in lakes of the Bunger Hills, East Antartica. Polar Biol 29(8):694–704

    Article  Google Scholar 

  • Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, Kana TM (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61(1):165–197

    Article  CAS  Google Scholar 

  • Greenwood JL, Rosemond AD (2005) Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Can J Fish Aquat Sci 62(9):2033–2045

    Article  CAS  Google Scholar 

  • Hagemann M (2013) Genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. In: Chauvat F, Cassier-Chauvat C (eds) Advances in botanical research. Academic Press, Boca Raton

    Google Scholar 

  • Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antartica. Archiv für Hydrobiol 127(3):271–287

    Google Scholar 

  • Hawes I, Safi K, Sorrell B, Webster-Brown J, Arscott D (2011) Summer–winter transitions in Antarctic ponds I: the physical environment. Antarct Sci 23(3):235–242

    Article  Google Scholar 

  • Hawes I, Sumner D, Andersen D, Jungblut A, Mackey T (2013) Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2(1):151–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawes I, Howard-Williams C, Sorrell B (2014) Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antartica. Antarct Sci 26(3):219–230

    Article  Google Scholar 

  • Hillebrand H, Sommer U (1999) The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnol Oceanogr 44(2):440–446

    Article  Google Scholar 

  • Howard-Williams C, Pridmore RD, Broady PA, Vincent WF (1990) Environmental and biological variability in the McMurdo Ice Shelf ecosystem. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin

    Google Scholar 

  • Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19(1):166–172

    Article  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antartica. Environ Microbiol 7(4):519–529

    Article  CAS  PubMed  Google Scholar 

  • Kellogg TB, Kellogg DE (2002) Non-marine and littoral diatoms from Antarctic and subantarctic regions – distribution and updated taxonomy. In: Witkowski A (ed) Diatom monographs. ARG. Gantner Verlag, Ruggell

    Google Scholar 

  • Kohler TJ, Kopalová K, Van de Vijver B, Kociolek JP (2015) The genus Luticola DG Mann (Bacillariophyta) from the McMurdo Sound Region, Antarctica, with the description of four new species. Phytotaxa 208(2):103–134

    Article  Google Scholar 

  • Komárek J (2007) Phenotype diversity of the cyanobacteria genus Leptolyngbya in maritime Antarctica. Pol Polar Res 28:211–231

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil/ 2nd part: Oscillatoriales. In: B Büdel, L Krienitz, G Gärtner, M Schagerl, (eds) Süsswasserflora von Mitteleuropa, Band 19/2. Elsevier GmbH, Munchen

  • Komárek J, Elster J (2008) Ecological background of cyanobacterial assemblages of the northern part of James Ross Island, Antartica. Pol Polar Res 29(1):17–32

    Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacteria microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1991) Bacillariophyceae. 4. Teil: Achanathaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. In: H Ettl, G Gäntner, J Gerloff, H Heynig, D Mollenhauer, (eds) Süsswasserflora von Mitteleuropa, Band 2/4 Gustav Fisher Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1997a) Bacillariophyceae. 1. Teil: Naviculaceae. In: H Ettl, J Gerloff, H Heynig, D Mollenhauer, (eds) Süsswasserflora von Mitteleuropa, Band 2/1. Spektrum Akademischer Verlag, Heidelberg

  • Krammer K, Lange-Bertalot H (1997b) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: H Ettl, J Gerloff, H Heynig, D Mollenhauer, (eds) Süsswasserflora von Mitteleuropa, Band 2/1. Spektrum Akademischer Verlag, Heidelberg

  • Krammer K, Lange-Bertalot H (2000) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: H Ettl, G Gärtner, J Gerloff, H Heynig, D Mollenhauer, (eds). Süsswasserflora von Mitteleuropa, Band 2/3 Gustav Fisher Verlag, Stuttgart

  • Laing TE, Smol JP (2000) Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. J Phycol 36(6):1035–1048

    Article  CAS  Google Scholar 

  • Lee TA, Rollwagen-Bollens G, Bollens SM (2015) The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. Environ Monit Assess 187(6):315

    Article  PubMed  CAS  Google Scholar 

  • Lyons WB, Welch KA, Gardner CB, Jaros C, Moorhead DL, Knoepfle JL, Doran PT (2012) The geochemistry of upland ponds, Taylor Valley, Antartica. Antarct Sci 24(1):3–14

    Article  Google Scholar 

  • Marker AF (1980) Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch Hydrobiol Beih Ergebn Limnol 14:52–69

    CAS  Google Scholar 

  • Michalski G, Bockheim JG, Kendall C, Thiemens M (2005) Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica. Geophys Res Lett. https://doi.org/10.1029/2004GL022121

    Article  Google Scholar 

  • Naeem S (2006) Expanding scales in biodiversity-based research: challenges and solutions for marine systems. Mar Ecol Prog Ser 311:273–283

    Article  Google Scholar 

  • Noe GB, Scinto LJ, Taylor J, Childers DL, Jones RD (2003) Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshw Biol 48(11):1993–2008

    Article  CAS  Google Scholar 

  • Ohtsuka T, Kudoh S, Imura S, Ohtani S (2006) Diatoms composing benthic microbial mats in freshwater lakes of Skarvsnes ice-free area, East Antarctica. Polar Biosci 20:113–130

    Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31(3):225–247

    Article  CAS  PubMed  Google Scholar 

  • Portielje R, Lijklema L (1994) Kinetics of luxury uptake of phosphate by algae-dominated benthic communities. Hydrobiology 275(1):349–358

    Article  Google Scholar 

  • Quesada A, Fernández-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. Oxford University Press, Oxford

    Book  Google Scholar 

  • Raven JA, Wollenweber B, Handley LL (1992) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol 121:19–32

    Article  CAS  Google Scholar 

  • Rejmánková E, Komárková J (2005) Response of cyanobacterial mats to nutrient and salinity changes. Aquat Bot 83(2):87–107

    Article  CAS  Google Scholar 

  • Roberts D, McMinn A (1996) Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antartica. Antarct Sci 8(4):331–341

    Article  Google Scholar 

  • Roberts D, McMinn A, Johnston N, Gore DB, Melles M, Cremer H (2001) An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antartica. Antarct Sci 13(4):410–419

    Article  Google Scholar 

  • Sabbe K, Verleyen E, Hodgson D, Vanhoutte K, Vyverman W (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarct Sci 15:227–248

    Article  Google Scholar 

  • Saunders KM, Hodgson DA, McMinn A (2009) Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential for reconstructing past environmental changes. Antarct Sci 21(1):35–49

    Article  Google Scholar 

  • Schmidt S, Moskal W, De Mora SJ, Howard-Williams C, Vincent WF (1991) Limnological properties of Antarctic ponds during winter freezing. Antarct Sci 3(4):379–388

    Article  Google Scholar 

  • Scinto LJ, Reddy KR (2003) Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat Bot 77(3):203–222

    Article  CAS  Google Scholar 

  • Sirová D, Vrba J, Rejmankova E (2006) Extracellular enzyme activities in benthic cyanobacterial mats: comparison between nutrient-enriched and control sites in marshes of northern Belize. Aquat Microb Ecol 44(1):11–20

    Article  Google Scholar 

  • Sobrino C, Ward ML, Neale PJ (2008) Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol Oceanogr 53(2):494–505

    Article  CAS  Google Scholar 

  • Spaulding SA, McKnight DM, Stoerner EF, Doran PT (1997) Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:404–420

    Google Scholar 

  • Spaulding SA, Kociolek JP, Wong D (1999) A taxonomic and systematic revision of the genus Muelleria (Bacillariophyta). Phycologia 38:314–341

    Article  Google Scholar 

  • Spaulding S, Esposito R, Lubinski D, Horn S, Cox M, McKnight D, Alger A, Hall B, Mayernick M, Whittaker T, Yang C (2016). Antarctic freshwater diatoms web site, McMurdo Dry Valleys LTER. https://huey.colorado.edu/diatoms/

  • Sutherland DL (2009) Microbial mat communities in response to recent changes in the physiochemical environment of the meltwater ponds on the McMurdo Ice Shelf, Antartica. Pol Biol 32(7):1023–1032

    Article  Google Scholar 

  • Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ (2015) Frequency of CO2 supply affects wastewater microalgal photosynthesis, productivity and nutrient removal efficiency in mesocosms: implications for full-scale high rate algal ponds. J Appl Phycol 27(5):1901–1911

    Article  CAS  Google Scholar 

  • Sutherland DL, Turnbull MH, Craggs RJ (2017) Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Res 124:504–512

    Article  CAS  PubMed  Google Scholar 

  • Verleyen E, Hodgson DA, Vyverman W, Roberts D, McMinn A, Vanhoutte K, Sabbe K (2003) Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. J Paleolimnol 30:195–215

    Article  Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Alan BW, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht

    Google Scholar 

  • Wait BR, Webster-Brown JG, Brown KL, Healy M, Hawes I (2006) PChemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarct Sci 18:515–524

    Article  Google Scholar 

  • Webster-Brown J, Gall M, Gibson J, Wood S, Hawes I (2010) The biogeochemistry of meltwater habitats in the Darwin Glacier region (80 S), Victoria Land, Antarctica. Antarct Sci 22:646–661

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the time and effort of three journal reviewers, whose feedback improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Sutherland.

Ethics declarations

Conflict of interest

All authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutherland, D.L., Howard-Williams, C., Ralph, P. et al. Environmental drivers that influence microalgal species in meltwater pools on the McMurdo Ice Shelf, Antarctica. Polar Biol 43, 467–482 (2020). https://doi.org/10.1007/s00300-020-02649-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02649-8

Keywords

Navigation