Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNC5B mediates G2/M phase arrest of bladder cancer cells by binding to CDC14A and P53

A Correction to this article was published on 20 October 2021

This article has been updated

Abstract

UNC5B is a known tumor suppressor gene in a variety of cancers. As a transmembrane protein, UNC5B also induces apoptosis in a P53-dependent manner. In this study, we demonstrate that UNC5B inhibits proliferation through G2/M phase arrest by mass spectrometry and bioinformatics analysis in bladder cancer cells. By combing with CDC14A and P53, UNC5B dephosphorylated P53 at Ser-315 site. This dephosphorylation facilitated G2/M phase arrest by reducing the expression of cyclin B1 and increasing the expression of p-CDK1, thus inhibiting tumor proliferation. Knockdown of CDC14A suppressed the G2/M phase arrest induced by UNC5B in vitro, and eliminated the inhibitory effect of UNC5B on tumor proliferation in vivo. Our results show that UNC5B-mediated cell cycle arrest may act as a potential treatment for bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of full-length UNC5B and UNC5B truncates on the proliferation of 5637 and T24 cells.
Fig. 2: Full-length UNC5B induced G2/M phase arrest in 5637 and T24 cells.
Fig. 3: CDC14A was closely related to G2/M phase arrest in 5637 and T24 cells.
Fig. 4: UNC5B dephosphorylated P53 at Ser-315 site by combing with CDC14A and P53, thereby mediating cell cycle arrest and inhibit proliferation.
Fig. 5: Knockdown of CDC14A suppressed the G2/M phase arrest induced by UNC5B.
Fig. 6: Knockdown of CDC14A eliminated the inhibitory effect of UNC5B on tumor proliferation in mice.

Similar content being viewed by others

Change history

References

  1. Loftfield E, Freedman ND, Inoue-Choi M, Graubard BI, Sinha R. A prospective investigation of coffee drinking and bladder cancer incidence in the United States. Epidemiology. 2017;28:685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fankhauser CD, Mostafid H. Prevention of bladder cancer incidence and recurrence: nutrition and lifestyle. Curr Opin Urol. 2018;28:88–92.

    Article  PubMed  Google Scholar 

  3. Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, et al. Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur Urol. 2016;69:300–10.

    Article  PubMed  Google Scholar 

  4. Martinez Rodriguez RH, Buisan Rueda O, Ibarz L. Bladder cancer: present and future. Med Clin. 2017;149:449–55.

    Article  Google Scholar 

  5. Mahdavifar N, Ghoncheh M, Pakzad R, Momenimovahed Z, Salehiniya H. Epidemiology, incidence and mortality of bladder cancer and their relationship with the development index in the world. Asian Pac J Cancer Prev. 2016;17:381–6.

    Article  PubMed  Google Scholar 

  6. Chavan S, Bray F, Lortet-Tieulent J, Goodman M, Jemal A. International variations in bladder cancer incidence and mortality. Eur Urol. 2014;66:59–73.

    Article  PubMed  Google Scholar 

  7. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63:234–41.

    Article  PubMed  Google Scholar 

  8. Zainfeld D, Daneshmand S. Transurethral resection of bladder tumors: improving quality through new techniques and technologies. Curr Urol Rep. 2017;18:34.

    Article  PubMed  Google Scholar 

  9. Kramer MW, Altieri V, Hurle R, Lusuardi L, Merseburger AS, Rassweiler J, et al. Current evidence of transurethral en-bloc resection of nonmuscle invasive bladder cancer. Eur Urol Focus. 2017;3:567–76.

    Article  PubMed  Google Scholar 

  10. Yeung C, Dinh T, Lee J. The health economics of bladder cancer: an updated review of the published literature. Pharmacoeconomics. 2014;32:1093–104.

    Article  PubMed  Google Scholar 

  11. Kim JK, Jeong CW, Kwak C, Kim HH, Ku JH. Progression to T1 high grade (T1HG) from a lower stage/grade is associated with poorer survival outcomes than initial diagnosis with T1HG bladder cancer. Ann Surg Oncol. 2017;24:2413–9.

    Article  PubMed  Google Scholar 

  12. Pagliarini R, Shao W, Sellers WR. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 2015;16:280–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan M, Wang C, He B, Yang M, Tong M, Long Z, et al. Aurora-A kinase: a potent oncogene and target for cancer therapy. Med Res Rev. 2016;36:1036–79.

    Article  PubMed  Google Scholar 

  14. Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23:viii6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hessmann E, Schneider G, Ellenrieder V, Siveke JT. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene. 2016;35:1609–18.

    Article  CAS  PubMed  Google Scholar 

  16. He K, Jang SW, Joshi J, Yoo MH, Ye K. Akt-phosphorylated PIKE-A inhibits UNC5B-induced apoptosis in cancer cell lines in a p53-dependent manner. Mol Biol Cell. 2011;22:1943–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Zhang Z, Li ZH, Kong CZ. Clinical significance of UNC5B expression in bladder cancer. Tumour Biol. 2013;34:2099–108.

    Article  CAS  PubMed  Google Scholar 

  18. Kong C, Zhan B, Piao C, Zhang Z, Zhu Y, Li Q. Overexpression of UNC5B in bladder cancer cells inhibits proliferation and reduces the volume of transplantation tumors in nude mice. BMC Cancer. 2016;16:892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Okazaki S, Ishikawa T, Iida S, Ishiguro M, Kobayashi H, Higuchi T, et al. Clinical significance of UNC5B expression in colorectal cancer. Int J Oncol. 2012;40:209–16.

    CAS  PubMed  Google Scholar 

  20. Kruger RP, Lee J, Li W, Guan KL. Mapping netrin receptor binding reveals domains of Unc5 regulating its tyrosine phosphorylation. J Neurosci. 2004;24:10826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992;71:289–99.

    Article  CAS  PubMed  Google Scholar 

  22. Llambi F, Lourenco FC, Gozuacik D, Guix C, Pays L, Del Rio G, et al. The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J. 2005;24:1192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delloye-Bourgeois C, Brambilla E, Coissieux MM, Guenebeaud C, Pedeux R, Firlej V, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101:237–47.

    Article  CAS  PubMed  Google Scholar 

  24. Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C, et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell. 2010;40:863–76.

    Article  CAS  PubMed  Google Scholar 

  25. Wu B, Yao H, Wang S, Xu R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-kappaB, and caspase-3 activation. Biochem Biophys Res Commun. 2013;434:75–80.

    Article  CAS  PubMed  Google Scholar 

  26. Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H. p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol. 2003;5:216–23.

    Article  CAS  PubMed  Google Scholar 

  27. Lee M, Kang H, Jang SW. CoCl2 induces PC12 cells apoptosis through p53 stability and regulating UNC5B. Brain Res Bull. 2013;96:19–27.

    Article  CAS  PubMed  Google Scholar 

  28. Hu H, Shao D, Wang L, He F, Huang X, Lu Y, et al. Phosphoregulation of Cdc14A by pololike kinase 1 is involved in betacell function and cell cycle regulation. Mol Med Rep. 2019;20:4277–84.

    CAS  PubMed  Google Scholar 

  29. Ovejero S, Ayala P, Malumbres M, Pimentel-Muinos FX, Bueno A, Sacristan MP. Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Sci Rep. 2018;8:11871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vazquez-Novelle MD, Mailand N, Ovejero S, Bueno A, Sacristan MP. Human Cdc14A phosphatase modulates the G2/M transition through Cdc25A and Cdc25B. J Biol Chem. 2010;285:40544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sacristan MP, Ovejero S, Bueno A. Human Cdc14A becomes a cell cycle gene in controlling Cdk1 activity at the G(2)/M transition. Cell Cycle. 2011;10:387–91.

    Article  CAS  PubMed  Google Scholar 

  32. Paulsen MT, Starks AM, Derheimer FA, Hanasoge S, Li L, Dixon JE, et al. The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Mol Cancer. 2006;5:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li L, Ljungman M, Dixon JE. The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem. 2000;275:2410–4.

    Article  CAS  PubMed  Google Scholar 

  34. Ovejero S, Ayala P, Bueno A, Sacristan MP. Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Mol Biol Cell. 2012;23:4515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arakawa H. p53, apoptosis and axon-guidance molecules. Cell Death Differ. 2005;12:1057–65.

    Article  CAS  PubMed  Google Scholar 

  36. Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, et al. Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol. 2008;10:698–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu J, Kong CZ, Gong DX, Zhang Z, Zhu YY. PKC alpha regulates netrin-1/UNC5B-mediated survival pathway in bladder cancer. BMC Cancer. 2014;14:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Blinova E, Roshchin D, Kogan E, Samishina E, Demura T, Deryabina O. et al. Patient-derived non-muscular invasive bladder cancer xenografts of main molecular subtypes of the tumor for anti-Pd-l1 treatment assessment. Cells. 2019;8:526.

    Article  PubMed Central  CAS  Google Scholar 

  39. Guo Y, Liu Z, Li K, Cao G, Sun C, Cheng G, et al. Paris polyphylla-derived saponins inhibit growth of bladder cancer cells by inducing mutant P53 degradation while up-regulating CDKN1A expression. Curr Urol. 2018;11:131–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wei XW, Yuan JM, Huang WY, Chen NY, Li XJ, Pan CX, et al. 2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and in vivo effective anticancer agents. Eur J Med Chem. 2020;186:111851.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Zhu W, Chen X, Wei G, Jiang G, Zhang G. Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer. J Transl Med. 2020;18:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palsgrove DN, Taheri D, Springer SU, Cowan M, Guner G, Mendoza Rodriguez MA, et al. Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum Pathol. 2019;85:1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Fund [Grant No. 81672525], the Project of Distinguished Professor of Liaoning Province (Grant No. [2012]145), Liaoning Natural Science Fund [Grant No. 201602830], Shenyang clinical medicine research center (Grant No. [2017]76) and Shenyang Plan Project of Science and Technology/Shenyang Science and Technology Bureau (Grant No. F17-230-9-08), China Medical University’s 2017 discipline promotion program (Grant No. 2017XK08), China Medical University’s 2018 discipline promotion program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuize Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhu, Y., Zhang, Z. et al. UNC5B mediates G2/M phase arrest of bladder cancer cells by binding to CDC14A and P53. Cancer Gene Ther 27, 934–947 (2020). https://doi.org/10.1038/s41417-020-0175-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0175-x

Search

Quick links