Skip to main content

Advertisement

Log in

Multi-element Analysis of Brain Regions from South African Cadavers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace elements are vital for a variety of functions in the brain. However, an imbalance can result in oxidative stress. It is important to ascertain the normal levels in different brain regions, as such information is still lacking. Therefore, this study aimed to provide baseline trace element concentrations from a South African population, as well as determine trace element differences between sex and brain regions. Samples from the caudate nucleus, putamen, globus pallidus and hippocampus were analysed using inductively coupled plasma mass spectrometry. Aluminium, antimony, arsenic, barium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, selenium, silicon, sodium, strontium, vanadium and zinc were assessed. A multiple median regression model was used to determine differences between sex and regions. Twenty-nine male and 13 female cadavers from a Western Cape, South African population were included (mean age 35 years, range 19 to 45). Trace element levels were comparable to those of other populations, although magnesium was considerably lower. While there were no sex differences, significant anatomical regional differences existed; the caudate nucleus and hippocampus were the most similar, and the globus pallidus and hippocampus the most different. In conclusion, this is the first article to report the trace element concentrations of brain regions from a South African population. Low magnesium levels in the brain may be linked to a dietary deficiency, and migraines, depression and epilepsy have been linked to low magnesium levels. Future research should be directed to increase the dietary intake of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Młyniec K, Gaweł M, Doboszewska U, Starowicz G, Pytka K, Davies CL, Budziszewska B (2015) Essential elements in depression and anxiety: part II. Pharmacol Rep 67:187–194. https://doi.org/10.1016/j.pharep.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  2. de Baaij JHF, Hoenderop JGJ, Bindels RJM (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  3. Markesbery WR, Ehmann WD, Hossain TIM, Alauddin M (1984) Brain manganese concentrations in human aging and Alzheimer’s disease. Neurotoxicology 5:49–58

    CAS  PubMed  Google Scholar 

  4. Rajan MT, Rao KSJ, Mamatha BM et al (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146:153–166

    CAS  PubMed  Google Scholar 

  5. Wandzilak A, Czyzycki M, Radwanska E, Adamek D, Geraki K, Lankosz M (2015) X-ray fluorescence study of the concentration of selected trace and minor elements in human brain tumours. Spectrochim Acta Part B 114:52–57. https://doi.org/10.1016/j.sab.2015.10.002

    Article  CAS  Google Scholar 

  6. Serpa RFB, de Jesus EFO, Anjos MJ et al (2008) Topographic trace-elemental analysis in the brain of Wistar rats by X-ray microfluorescence with synchrotron radiation. Anal Sci 24:839–842

    CAS  PubMed  Google Scholar 

  7. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of age-related changes and anatomical region differences. J Trace Elem Med Biol 28:13–17

    CAS  PubMed  Google Scholar 

  8. Rahil-Khazen R, Botann BJ, Myking A, Ulvik R (2002) Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES). J Trace Elem Med Biol 16:15–25

    CAS  PubMed  Google Scholar 

  9. Rahil-Khazen R, Bolann BJBJ, Ulvik RJRJ (2002) Correlations of trace element levels within and between different normal autopsy tissues analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Biometals 15:87–98

    CAS  PubMed  Google Scholar 

  10. Ulas M, Cay M (2011) Effects of 17β-estradiol and vitamin E treatments on blood trace element and antioxidant enzyme levels in ovariectomized rats. Biol Trace Elem Res 139:347–355. https://doi.org/10.1007/s12011-010-8669-2

    Article  CAS  PubMed  Google Scholar 

  11. Tarohda T, Yamamoto M, Amano R (2004) Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 380:240–246. https://doi.org/10.1007/s00216-004-2697-8

    Article  CAS  PubMed  Google Scholar 

  12. Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154. https://doi.org/10.1007/BF00205853

    Article  CAS  PubMed  Google Scholar 

  13. Krebs N, Langkammer C, Goessler W, Ropele S, Fazekas F, Yen K, Scheurer E (2014) Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol 28:1–7. https://doi.org/10.1016/j.jtemb.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  14. Duflou H, Maenhaut W, de Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14:1099–1112

    CAS  PubMed  Google Scholar 

  15. Saiki M, Leite REP, Genezini FA, Grinberg LT, Ferretti REL, Farfel JM, Suemoto C, Pasqualucci CA, Jacob-Filho W (2013) Trace element concentration differences in regions of human brain by INAA. J Radioanal Nucl Chem 296:267–272

    CAS  Google Scholar 

  16. Leite REP, Jacob-Filho W, Saiki M, Grinberg LT, Ferretti REL (2008) Determination of trace elements in human brain tissues using neutron activation analysis. J Radioanal Nucl Chem 278:581–584. https://doi.org/10.1007/s10967-008-1009-8

    Article  CAS  Google Scholar 

  17. Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin T, Yuen WK (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314

    CAS  PubMed  Google Scholar 

  18. Chen JC, Hardy PA, Kucharczyk W, Clauberg M, Joshi JG, Vourlas A, Dhar M, Henkelman RM (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. Am J Neuroradiol 14:275–281

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward NI, Mason J (1987) Neutron activation analysis techniques for identifying elemental status in Alzheimer’s disease. J Radioanal Nucl Chem 113:515–526

    CAS  Google Scholar 

  20. Larsen NA, Pakkenberg H, Damsgaard E, Heydorn K (1979) Topographical distribution of arsenic, manganese, and selenium in the normal human brain. J Neurol Sci 42:407–416

    CAS  PubMed  Google Scholar 

  21. Larsen NA, Pakkenberg H, Damsgaard E, Heydorn K, Wold S (1981) Distribution of arsenic, manganese, and selenium in the human brain in chronic renal insufficiency, Parkinson’s disease, and amyotrophic lateral sclerosis. J Neurol Sci 51:437–446

    CAS  PubMed  Google Scholar 

  22. Andrási E, Farkas E, Gawlik D, Rösick U, Brätter P (2000) Brain iron and zinc contents of German patients with Alzheimer disease. J Alzheimers Dis 2:17–26

    PubMed  Google Scholar 

  23. Hock A, Demmel U, Schicha H et al (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98:49–64

    CAS  PubMed  Google Scholar 

  24. Andrási E, Farkas E, Scheibler H, Réffy A, Bezúr L (1995) Al, Zn, Cu, Mn and Fe levels in brain in Alzheimer’s disease. Arch Gerontol Geriatr 21:89–97

    PubMed  Google Scholar 

  25. Andrási E, Varga I, Dozsa A et al (1994) Classification of human brain parts using pattern recognition based on inductively coupled plasma atomic emission spectroscopy and instrumental neutron activation analysis. Chemom Intell Lab Syst 22:107–114

    Google Scholar 

  26. Andrási E, Nadasdi J, Molnár Z et al (1990) Determination of main and trace element contents in human brain by NAA and ICP-AES methods. Biol Trace Elem Res 26:691–698

    PubMed  Google Scholar 

  27. Peltz-Császma I, Andrási E, Lásztity A, Kösel S (2005) Determination of strontium and its relation to other alkaline earth elements in human brain samples. Microchem J 79:375–381. https://doi.org/10.1016/j.microc.2004.06.006

    Article  CAS  Google Scholar 

  28. Bélavári C, Andrási E, Molnár Z, Gawlik D (2004) Determination of Na, K, Rb and Cs distribution in human brain using neutron activation analysis. Microchim Acta 146:187–191. https://doi.org/10.1007/s00604-004-0219-1

    Article  CAS  Google Scholar 

  29. Rao KSJ, Rao RV, Shanmugavelu P, Menon RB (1999) Trace elements in Alzheimer’s brain: a new hypothesis. Alzheimer’s Rep 2:241–246

    Google Scholar 

  30. Tohno Y, Tohno S, Azuma C, Minami T, Ke L, Ongkana N, Sinthubua A, Mahakkanukrauh P (2013) Mineral composition of and the relationships between them of human basal ganglia in very old age. Biol Trace Elem Res 151:18–29. https://doi.org/10.1007/s12011-012-9535-1

    Article  CAS  PubMed  Google Scholar 

  31. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10. https://doi.org/10.1016/S0022-510X(01)00672-4

    Article  CAS  PubMed  Google Scholar 

  32. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res 161:190–201. https://doi.org/10.1007/s12011-014-0093-6

    Article  CAS  PubMed  Google Scholar 

  33. Correia H, Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) A post-mortem study of the anatomical region differences and age-related changes on Ca and Mg levels in the human brain. Microchem J 113:69–76

    CAS  Google Scholar 

  34. Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease: an in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122:667–673

    PubMed  Google Scholar 

  35. Corrigan FM, Reynolds GP, Ward NI (1991) Reductions of zinc and selenium in brain in Alzheimer’s disease. Trace Elem Med 8:1–5

    CAS  Google Scholar 

  36. House MJ, St. Pierre TG, Kowdley KV et al (2007) Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 57:172–180. https://doi.org/10.1002/mrm.21118

    Article  CAS  PubMed  Google Scholar 

  37. Harrison WW, Netsky MG, Brown M (1968) Trace elements in human brain: copper, zinc, iron, and magnesium. Clin Chim Ada 21:55–60

    CAS  Google Scholar 

  38. Goldberg WJ, Allen N (1981) Determination of Cu, Mn, Fe, and Ca in six regions of normal human brain, by atomic absorption spectroscopy. Clin Chem 27:562–564

    CAS  PubMed  Google Scholar 

  39. Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:1–28

    Google Scholar 

  40. Thompson CM, Markesbery WR, Ehmann WD et al (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9:1–8

    CAS  PubMed  Google Scholar 

  41. Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–346

    CAS  PubMed  Google Scholar 

  42. Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    CAS  PubMed  Google Scholar 

  43. Rulon LL, Robertson JD, Lovell MA, Deibel MA, Ehmann WD, Markesbery WR (2000) Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res 75:79–85

    CAS  PubMed  Google Scholar 

  44. Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, Kirsch WM (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76. https://doi.org/10.1016/j.neulet.2007.02.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abdalla MA, Sulieman SA, El Tinay AH, Khattab AGH (2009) Socio-economic aspects influencing food consumption patterns among children under age of five in rural area of Sudan. Pak J Nutr 8:653–659

    Google Scholar 

  46. Shahar D, Shai I, Vardi H, Shahar A, Fraser D (2005) Diet and eating habits in high and low socioeconomic groups. Nutrition 21:559–566. https://doi.org/10.1016/j.nut.2004.09.018

    Article  PubMed  Google Scholar 

  47. Grosbois B, Decaux O, Cador B, Cazalets C, Jego P (2005) Human iron deficiency. Bull Acad Natl Med 189:1649–1663

    CAS  PubMed  Google Scholar 

  48. Schönfeldt HC, Hall NG (2012) Dietary protein quality and malnutrition in Africa. Br J Nutr 108:69–76. https://doi.org/10.1017/S0007114512002553

    Article  CAS  Google Scholar 

  49. Onianwa PC, Adeyemo AO, Idowu OE, Ogabiela EE (2001) Copper and zinc contents of Nigerian foods and estimates of the adult dietary intakes. Food Chem 72:89–95. https://doi.org/10.1016/S0308-8146(00)00214-4

  50. Gibson RS, Bailey KB, Gibbs M, Ferguson EL (2010) A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31:134–146

    Google Scholar 

  51. Lonnerdal B (2000) Zinc and health: current status and future directions. J Nutr 130:1344S–1349S

    Google Scholar 

  52. Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325. https://doi.org/10.1007/s11104-008-9559-7

    Article  CAS  Google Scholar 

  53. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230. https://doi.org/10.1006/nbdi.1999.0250

    Article  CAS  PubMed  Google Scholar 

  54. Hebbrecht G, Maenhaut W, de Reuck J (1999) Brain trace elements and aging. Nucl Inst Methods Phys Res B 150:208–213

    CAS  Google Scholar 

  55. Wapnir RA (1998) Copper absorption and bioavailability. Am J Clin Nutr 67:1054–1060. https://doi.org/10.1093/ajcn/67.5.1054S

    Article  Google Scholar 

  56. Bowman AB, Kwakye GF, Hernández EH, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203. https://doi.org/10.1016/j.jtemb.2011.08.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Finley JW, Davis CD (1999) Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors 10:15–24

    CAS  PubMed  Google Scholar 

  58. Rubio C, Gutiérrez ÁJ, Revert C, Reguera JI, Burgos A, Hardisson A (2009) Daily dietary intake of iron, copper, zinc and manganese in a Spanish population. Int J Food Sci Nutr 60:590–600. https://doi.org/10.3109/09637480802039822

    Article  CAS  PubMed  Google Scholar 

  59. Finley JW (1999) Manganese absorption and retention by young women is associated with serum ferritin concentration. Am J Clin Nutr 70:37–43

    CAS  PubMed  Google Scholar 

  60. Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86:1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x

    Article  CAS  PubMed  Google Scholar 

  61. Rao GM, Rao AV, Raja A, Rao S, Rao A (2000) Role of antioxidant enzymes in brain tumours. Clin Chim Acta 296:203–212. https://doi.org/10.1016/S0009-8981(00)00219-9

    Article  CAS  PubMed  Google Scholar 

  62. Djinhi J, Tiahou G, Zirihi G et al (2008) Selenium deficiency and oxidative stress in clinically asymptomatic HIV1-infected persons in Côte d’Ivoire. Biol Clin Nu 3279:11–13

    Google Scholar 

  63. Macfarquhar JK, Broussard DL, Melstrom P et al (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170:256–261

    PubMed  PubMed Central  Google Scholar 

  64. HöckA DU, Schicha H et al (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98:49–64

    Google Scholar 

  65. Zachara BA, Pawluk H, Bloch-boguslawska E, Śliwka KM, Korenkiewicz J, Skok Ź, Ryć K (2001) Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch Environ Health 56:461–466. https://doi.org/10.1080/00039890109604483

    Article  CAS  PubMed  Google Scholar 

  66. Kafai MR, Ganji V (2003) Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third national health and nutrition examination survey, 1988-1994. J Trace Elem Med Biol 17:13–18. https://doi.org/10.1016/S0946-672X(03)80040-8

    Article  PubMed  Google Scholar 

  67. Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323. https://doi.org/10.1007/s00216-006-0529-8

    Article  CAS  PubMed  Google Scholar 

  68. Courtman C, van Ryssen J, Oelofse A (2012) Selenium concentration of maize grain in South Africa and possible factors influencing the concentration. S Afr J Anim Sci 42:454–458. https://doi.org/10.4314/sajas.v42i5.2

    Article  Google Scholar 

  69. Nimmrich V, Eckert A (2013) Calcium channel blockers and dementia. Br J Pharmacol 169:1203–1210. https://doi.org/10.1111/bph.12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8:297–301. https://doi.org/10.1177/107385840200800404

    Article  CAS  PubMed  Google Scholar 

  71. Jodral-Segado AM, Navarro-Alarcón M, López-Ga de la Serrana H, López-Martínez MC (2003) Magnesium and calcium contents in foods from SE Spain: influencing factors and estimation of daily dietary intakes. Sci Total Environ 312:47–58. https://doi.org/10.1016/S0048-9697(03)00199-2

    Article  CAS  PubMed  Google Scholar 

  72. Charlton KE, Steyn K, Levitt NS, Zulu JV, Jonathan D, Veldman FJ, Nel JH (2005) Diet and blood pressure in South Africa: intake of foods containing sodium, potassium, calcium, and magnesium in three ethnic groups. Nutrition 21:39–50. https://doi.org/10.1016/j.nut.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  73. Chandra S, Parker DJ, Barth RF, Pannullo SC (2016) Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS). J Neuro-Oncol 127:33–41. https://doi.org/10.1007/s11060-015-2022-8

    Article  CAS  Google Scholar 

  74. Obeid OA (2013) Low phosphorus status might contribute to the onset. Obes Rev 14:659–664. https://doi.org/10.1111/obr.12039

    Article  CAS  PubMed  Google Scholar 

  75. Kawai M, Kinoshita S, Ozono K, Michigami T (2016) Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an α-Klotho–deficient model. J Am Soc Nephrol 27:2810–2824. https://doi.org/10.1681/ASN.2015040446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Calvo MS, Tucker KL (2013) Is phosphorus intake that exceeds dietary requirements a risk factor in bone health. Ann N Y Acad Sci 1301:29–35. https://doi.org/10.1111/nyas.12300

    Article  CAS  PubMed  Google Scholar 

  77. Lacroix JÔJ, Campos FV, Frezza L, Bezanilla F (2013) Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron 79:651–657. https://doi.org/10.1016/j.neuron.2013.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ayus JC, Arieff AI (1999) Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. J Am Med Assoc 281:2299–2304. https://doi.org/10.1001/jama.281.24.2299

    Article  CAS  Google Scholar 

  79. Brown IJ, Tzoulaki I, Candeias V, Elliott P (2009) Salt intakes around the world: implications for public health. Int J Epidemiol 38:791–813. https://doi.org/10.1093/ije/dyp139

    Article  PubMed  Google Scholar 

  80. Ronquest-Ross L-C, Vink N, Sigge GO (2015) Food consumption changes in South Africa since 1994. S Afr J Sci 111:1–12. https://doi.org/10.17159/sajs.2015/20140354

  81. Davidson DLW, Ward NI (1988) Abnormal aluminium, cobalt, manganese, strontium and zinc concentrations in untreated epilepsy. Epilepsy Res 2:323–330. https://doi.org/10.1016/0920-1211(88)90041-1

    Article  CAS  PubMed  Google Scholar 

  82. Davarynejad G, Zarei M, Nagy PT (2013) Identification and quantification of heavy metals concentrations in pistacia. Not Sci Biol 5:438–444

    CAS  Google Scholar 

  83. Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A (2014) A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health 36:797–814. https://doi.org/10.1007/s10653-014-9622-7

    Article  CAS  PubMed  Google Scholar 

  84. Ysart G, Miller P, Crews H, Robb P, Baxter M, L’Argy CD, Lofthouse S, Sargent C, Harrison N (1999) Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit Contam 16:391–403. https://doi.org/10.1080/026520399283876

    Article  CAS  PubMed  Google Scholar 

  85. Ohgami N, Hori S, Ohgami K, Tamura H, Tsuzuki T, Ohnuma S, Kato M (2012) Exposure to low-dose barium by drinking water causes hearing loss in mice. Neurotoxicology 33:1276–1283. https://doi.org/10.1016/j.neuro.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  86. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013:1–12

    Google Scholar 

  87. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    CAS  PubMed  Google Scholar 

  88. Farina M, Avila DS, da Rocha JBT, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594. https://doi.org/10.1016/j.neuint.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  89. Haidar J (2010) Prevalence of anaemia, deficiencies of iron and folic acid and their determinants in ethiopian women. J Health Popul Nutr 28:359–368. https://doi.org/10.3329/jhpn.v28i4.6042

    Article  PubMed  PubMed Central  Google Scholar 

  90. Beneš B, Spěváčková V, Šmíd J et al (2005) Effects of age, BMI, smoking and contraception on levels of Cu, Se and Zn in the blood of the population in the Czech Republic. Cent Eur J Public Health 13:202–207

    PubMed  Google Scholar 

  91. Bureau I, Anderson RA, Arnaud J, Raysiguier Y, Favier AE, Roussel AM (2002) Trace mineral status in post menopausal women: impact of hormonal replacement therapy. J Trace Elem Med Biol 16:9–13. https://doi.org/10.1016/S0946-672X(02)80003-7

    Article  CAS  PubMed  Google Scholar 

  92. Hamad M, Awadallah S (2013) Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework. Med Hypotheses 81:1130–1134. https://doi.org/10.1016/j.mehy.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  93. Shapses SA, Sukumar D, Schneider SH, Schlussel Y, Brolin RE, Taich L (2012) Hormonal and dietary influences on true fractional calcium absorption in women: role of obesity. Osteoporos Int 23:2607–2614. https://doi.org/10.1007/s00198-012-1901-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97:7829–7834. https://doi.org/10.1073/pnas.130200197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harvey LJ, Armah CN, Dainty JR, Foxall RJ, Lewis DJ, Langford NJ, Fairweather-Tait SJ (2005) Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr 94:557–564. https://doi.org/10.1079/bjn20051493

    Article  CAS  PubMed  Google Scholar 

  96. Heath A-LM, Skeaff CM, Williams S, Gibson RS (2001) The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr 4:197–206. https://doi.org/10.1079/phn200054

    Article  CAS  PubMed  Google Scholar 

  97. Akinloye O, Adebayo TO, Oguntibeju OO et al (2011) Effects of contraceptives on serum trace elements, calcium and phosphorus levels. West Indian Med J 60:308–315

    CAS  PubMed  Google Scholar 

  98. Liukko P, Erkkola R, Bergink W (1988) Progestagen-dependent effect on some plasma proteins during oral contraception. Gynecol Obstet Investig 25:118–122. https://doi.org/10.1159/000293757

    Article  CAS  Google Scholar 

  99. Meier S, Bräuer AU, Heimrich B et al (2004) Myelination in the hippocampus during development and following lesion. Cell Mol Life Sci 61:1082–1094. https://doi.org/10.1007/s00018-004-3469-5

    Article  CAS  PubMed  Google Scholar 

  100. Takeda A (2003) Manganese action in brain function. Brain Res Rev 41:79–87

    CAS  PubMed  Google Scholar 

  101. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. BioMetals 14:343–351. https://doi.org/10.1023/A:1012982123386

    Article  CAS  PubMed  Google Scholar 

  102. Scheiber IF, Mercer JFB, Dringen R (2014) Progress in neurobiology metabolism and functions of copper in brain. Prog Neurobiol 116:33–57. https://doi.org/10.1016/j.pneurobio.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  103. Nonaka H, Akima M, Nagayama T, Hatori T, Zhang Z (1998) The fundamental architecture of the microvasculature of the basal ganglia and changes in senility. Neuropathology 18:47–54. https://doi.org/10.1111/j.1440-1789.1998.tb00077.x

    Article  Google Scholar 

  104. Kubíková T, Kochová P, Tomášek P, Witter K, Tonar Z (2018) Numerical and length densities of microvessels in the human brain: correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum. J Chem Neuroanat 88:22–32. https://doi.org/10.1016/j.jchemneu.2017.11.005

    Article  PubMed  Google Scholar 

Download references

Funding

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Cilliers.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Health Research Ethics Committee, Stellenbosch University, S17/09/183) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from the Legally Authorized Representative or from the next of kin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilliers, K., Muller, C.J. Multi-element Analysis of Brain Regions from South African Cadavers. Biol Trace Elem Res 199, 425–441 (2021). https://doi.org/10.1007/s12011-020-02158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02158-z

Keywords

Navigation