Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

An Overview on Steroids and Microwave Energy in Multi-Component Reactions towards the Synthesis of Novel Hybrid Molecules

Author(s): Preetismita Borah*, Vhatkar Dattatraya Shivling, Bimal Krishna Banik and Biswa Mohan Sahoo

Volume 17, Issue 8, 2020

Page: [594 - 609] Pages: 16

DOI: 10.2174/1570179417666200503050106

Price: $65

Abstract

In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.

Keywords: Microwave energy, hybrid molecule, carbon-carbon bond formation, Ugi-4CR, steroids, hazardous reagents.

Graphical Abstract
[1]
Rosen, H.; Glukhman, V.; Fildmann, T.E.; Lichtstein, D. Antitumor Steroids: Steroids having antitumor activities including D-ring fused steroidal. Mol. Biol. Cell, 2004, 15, 1044.
[http://dx.doi.org/10.1091/mbc.e03-06-0391] [PMID: 14718569]
[2]
Blickenstaff, R.T. Antitumor steroid; Academic Press Inc, 1992.
[3]
Bhakuri, D.S.; Rawat, D.S. Bioactive Marine Natural Products; Anamaya Publishers, 2005.
[http://dx.doi.org/10.1007/1-4020-3484-9]
[4]
(a)Guthrie, J.P.; O’Leary, S. Organic reaction mechanisms. Can. J. Chem., 1975, 53, 2150.
(b)Dugas, H.; Malika, I.O.; Rocheblave, L. Peptidomimetics and artificial enzymes. Steroids, 2008, 73, 375.
[5]
(a)Morzycki, J.W.; Wawer, I.; Gryszkiewicz, A.; Maj, J.; Siergiejczyk, L.; Zaworska, A. 13C-NMR study of 4-azasteroids in solution and solid state. Steroids, 2002, 67(7), 621-626.
[http://dx.doi.org/10.1016/S0039-128X(02)00012-0] [PMID: 11996935]
(b)Morzycki, J.W. Electrophilic reactions of 4-methyl-A-homo-4-azacholest-4a-en-3-one. Pol. J. Chem., 1995, 69, 321.
[6]
Singh, H.; Kapoor, V.K.; Paul, D. Heterosteroids and drug research. Prog. Med. Chem., 1979, 16, 35-149.
[http://dx.doi.org/10.1016/S0079-6468(08)70187-5] [PMID: 95596]
[7]
Pettit, G.R.; Moser, B.R.; Mendonça, R.F.; Knight, J.C.; Hogan, F. The cephalostatins. 22. synthesis of bis-steroidal pyrazine pyrones (1). J. Nat. Prod., 2012, 75(6), 1063-1069.
[http://dx.doi.org/10.1021/np300069z] [PMID: 22607450]
[8]
Boruah, R.C.; Ahmed, S.; Shrama, U.; Sandhu, J.S. A facile synthesis of annelated pyridines from β-formyl enamides under microwave irradiation. J. Org. Chem., 2000, 65, 922.
[http://dx.doi.org/10.1021/jo9912911]
[9]
Barthakur, M.G.; Borthakur, M.; Devi, P.; Sakia, C.J.; Saikia, A.; Bora, U.; Boruah, R.C. A novel and efficient lewis acid catalysed preparation of pyrimidines: microwave-promoted reaction of urea and β-formyl enamides. Synlett, 2007, 2007(2), 223-226.
[10]
Cepa, M.M.; Tavares da Silva, E.J.; Correia-da-Silva, G.; Roleira, F.M.; Teixeira, N.A. Structure-activity relationships of new A,D-ring modified steroids as aromatase inhibitors: design, synthesis, and biological activity evaluation. J. Med. Chem., 2005, 48(20), 6379-6385.
[http://dx.doi.org/10.1021/jm050129p] [PMID: 16190763]
[11]
Borthakur, M.; Barthakur, M.G.; Boruah, R.C. Microwave promoted one-pot synthesis of novel A-ring fused steroidal dehydropiperazines. Steroids, 2008, 73(5), 539-542.
[http://dx.doi.org/10.1016/j.steroids.2008.01.005] [PMID: 18291431]
[12]
Katritzky, A.R.; Gut, J. Advances in Heterocyclic Chemistry; Academic Press Inc: London, 1963, p. 189.
[13]
Carruthers, W. Some Modern Methods of Organic Synthesis, 2nd ed; Cambridge University Press: Cambridge, 1978. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
[14]
(a)Briziarelli, G.; Castelli, P.P.; Vitali, R.; Gardi, R. 9 Alpha-fluoro-11 betahydroxybenzo (d,e)testosterone 17-acetate. A modified steroid highly active on DMBA-induced mammary tumors in rats. Experientia, 1973, 29(5), 618-619.
[http://dx.doi.org/10.1007/BF01926703] [PMID: 4730311]
(b)Manhas, M.S.; Brown, J.W.; Pandit, U.K.; Houdewind, P. Terpenoids and steroids. Tetrahedron, 1975, 31, 1325.
[http://dx.doi.org/10.1016/0040-4020(75)80178-5]
(c)Redeuilh, G.; Viel, C.; Leroy, F.; Hospital, M. Total synthesis of 8- azasteroids. J. Heterocycl. Chem., 1976, 13, 399.
[http://dx.doi.org/10.1002/jhet.5570130243]
(d)Wang, K.C.; Yu, S.S.; Liaw, L.Y. Taiwan Yaoxue Zazhi. Adv. Heterocycl. Chem., 1975, 27, 77.
[15]
(a)Cooley, G.; Ducker, J.W.; Ellis, B.; Petrow, V.; Scott, W.P. Modified steroid hormones. Part XXIII. Some pentacyclic types. J. Chem. Soc., 1961, 4108
[http://dx.doi.org/10.1039/jr9610004108]
(b)Song, Q.; Ho, D.M.; Pascal, R.A.J., Jr The supertristeroids: Large, chiral, molecular bowls prepared by trimerization of pentacyclic steroidal ketones. J. Org. Chem., 2007, 72(12), 4449-4453.
[http://dx.doi.org/10.1021/jo070458k] [PMID: 17489637]
[16]
Rivera, D.G.; Wessjohann, L.A. Synthesis of novel steroid-peptoid hybrid macrocycles by multiple multicomponent macrocyclizations including bifunctional building blocks (MiBs). Molecules, 2007, 12(8), 1890-1899.
[http://dx.doi.org/10.3390/12081890] [PMID: 17960094]
[17]
Rivera, D.G.; Concepcion, O.; Perez-Labrada, K.; Coll, F. Synthesis of diamino-furostan sapogenins and their use as scaffolds for positioning peptides in a preorganized form. Tetrahedron, 2008, 64, 5298.
[http://dx.doi.org/10.1016/j.tet.2008.03.023]
[18]
Hostettman, K.; Marston, A. Saponins; Cambridge University, Press: Cambridge, England, 1995.
[http://dx.doi.org/10.1017/CBO9780511565113]
[19]
(a)Mbadugha, B.N.; Menger, F.M. Sugar/steroid/sugar conjugates: Sensitivity of lipid binding to sugar structure. Org. Lett., 2003, 5(22), 4041-4044.
[http://dx.doi.org/10.1021/ol030084r] [PMID: 14572244]
(b)Cheng, Y.; Ho, D.M.; Gottlieb, C.R.; Kahne, D.; Bruck, M.A. J. Am. Chem. Soc., 1992, 114, 7319.
[http://dx.doi.org/10.1021/ja00044a067]
[20]
(a)Boyce, R.; Li, G.; Nestler, H.P.; Suenaga, T.; Still, W.C. Peptidosteroidal receptors for opioid peptides. Sequence-selective binding using a synthetic receptor library. J. Am. Chem. Soc., 1994, 116, 7955.
[http://dx.doi.org/10.1021/ja00096a086]
(b)Cheng, Y.; Suenaga, T.; Still, W.C. Sequence-selective peptide binding with a peptido-a,b-trans-steroidal receptor selected from an encoded combinatorial receptor library. J. Am. Chem. Soc., 1996, 118, 1813.
[http://dx.doi.org/10.1021/ja952976v]
[21]
(a)Madder, A.; Li, L.; De Muynck, H.; Farcy, N.; Van Haver, D.; Fant, F.; Vanhoenacker, G.; Sandra, P.; Davis, A.P.; De Clercq, P.J. Evaluation of a two-stage screening procedure in the combinatorial search for serine protease- like activity. J. Comb. Chem., 2002, 4(6), 552-562.
[http://dx.doi.org/10.1021/cc020016g] [PMID: 1242559]
(b)De Muynck, H.; Madder, A.; Farcy, N.; De Clercq, P.J. Perez-Pay an, M. N.; Ohberg, L. M.; Davis, A. P. Design of a minimized cyclic tetrapeptide that neutralizes bacterial endotoxins. Angew. Chem. Int. Ed., 2000, 39, 145.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000103)39:1<145:AID-ANIE145>3.0.CO;2-J]
[22]
Ding, B.; Taotofa, U.; Orsak, T.; Chadwell, M.; Savage, P.B. Synthesis and characterization of peptide-cationic steroid antibiotic conjugates. Org. Lett., 2004, 6(20), 3433-3436.
[http://dx.doi.org/10.1021/ol048845t] [PMID: 15387516]
[23]
(a)Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(b)Ugi, I.; Werner, B.; Domling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8, 53.
[http://dx.doi.org/10.3390/80100053]
[24]
(a)Hulme, C. Multicomponent Reactions; Zhu, J.; Bienayme, H., Eds.; Wiley- VCH: Weinheim, , 2005, p. 311.
[http://dx.doi.org/10.1002/3527605118.ch11]
(b)Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
(c)Weber, L. Current status of virtual combinatorial library design. Drug Discov. Today, 2002, 7, 143.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[25]
Rivera, D.G.; Pando, O.; Coll, F. Synthesis of peptidomimetic-spirostane hybrids via Ugi reaction: a versatile approach for the formation of peptide–steroid conjugates. Tetrahedron, 2006, 62, 8327.
[http://dx.doi.org/10.1016/j.tet.2006.06.050]
[26]
Teize, L.F.; Schneider, G.; Wolfling, J.; Fecher, A.; Nobel, T.; Peterson, S.; Schuberth, I.; Wulff, C. A novel approach in drug discovery: synthesis of estrone–talaromycin natural product hybrids. Chem. Eur. J, 2000, 6, 3755.
[27]
Masters, J.J.; Jung, D.K.; Danishefsky, S.J.; Snyder, L.B.; Park, T.K.; Issacs, R.C.A.; Alaimo, C.A.; Young, W.B. A novel intramolecular heck reaction: Synthesis of a cholesterol ‐ baccatin III hybrid. Angew. Chem. Int. Ed. Engl., 1995, 34, 452-455.
[http://dx.doi.org/10.1002/anie.199504521]
[28]
Von, I. Scherlitz, Hofmann.; Dubs, M.; Krieg, R.; Schonecker, B.; Kluge, M.; Sicker, D. Hybridnaturstoffe: Synthese cyclischer hydroxamsäuren der estra‐1,3,5(10)‐trien‐reihe. Helv. Chim. Acta, 1997, 80, 2345-2351.
[29]
Wang, J.; De Clercq, P.J. Angew. Chem. Int. Ed. Engl., 1995, 34, 1749-1752.
[http://dx.doi.org/10.1002/anie.199517491]
[30]
Jones, G.B.; Hynd, G.; Wright, J.M.; Purohit, A.; Plourde, G.W., II; Huber, R.S.; Mathews, J.E.; Li, A.; Kilgore, M.W.; Bubley, G.J.; Yancisin, M.; Brown, M.A. Target-directed enediynes: designed estramycins. J. Org. Chem., 2001, 66(11), 3688-3695.
[http://dx.doi.org/10.1021/jo0055842] [PMID: 11374986]
[31]
Tietze, L.F.; Schneider, G.; Wölfling, J.; Nöbel, T.; Wulff, C.; Schubert, I.; Rübeling, A. Efficient synthesis of a novel estrone‐ talaromycin hybrid natural product. Angew. Chem. Int. Ed. Engl., 1998, 37(18), 2469-2470.
[32]
Schneider, G.; Bottka, S.; Hackler, L.; Wolfling, J.; Sohar, P. Steroids, XLI. neighbouring group participation, X. neighbouring group participation and fragmentation during the solvolysis of the epimers of 3‐methoxy‐16. Ann. Chem., 1989, 263, 58.
[33]
Kuduk, S.D.; Zheng, F.F.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky, S.J. Synthesis and evaluation of geldanamycin-estradiol hybrids. Bioorg. Med. Chem. Lett., 1999, 9(9), 1233-1238.
[http://dx.doi.org/10.1016/S0960-894X(99)00185-7] [PMID: 10340605]
[34]
Kuduk, S.D.; Harris, T.C.; Zheng, F.F.; Sepp-Lorenzino, L.; Ouerfelli, Q.; Rosen, N.; Danishefsky, S.J. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg. Med. Chem. Lett., 2000, 10(11), 1303-1306.
[http://dx.doi.org/10.1016/S0960-894X(00)00208-0] [PMID: 10866406]
[35]
Jurášek, M.; Dzubák, P.; Rimpelová, S.; Sedlák, D.; Konecny, P.; Frydrych, I.; Gurska, S.; Hajduch, M.; Bogdanová, K.; Kolar, M.; Müller, T.; Kmonícková, E.; Ruml, T.; Harmath, J.; Drašar, P. B. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. 2017, Steroids(117), 97-104.
[http://dx.doi.org/10.1016/j.steroids.2016.08.011]
[36]
Li, L-S.; Hu, Y-J.; Wu, Y.; Wu, Y-Li.; Yue, J.; Yang, F. Steroid-fullerene adducts from diels–alder reactions: Characterization and the effect on the activity of Ca2+-ATPase. J. Chem. Soc. Perkin Trans., 2001, 1, 617.
[http://dx.doi.org/10.1039/b007498p]
[37]
Hamelin, J.; Bazureau, J-P.; Boullet, F.T. Microwaves in Organic Chemisry, 2nd ed.; A., Loupy., Ed.; Wiley-VCH, Weinheim: Germany, 2003. Hoz, A. dela; Diaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev, 2005, 34, 164. Oliver, Kappe C. Microwave dielectric heating in synthetic organic chemistry. hem. Soc. Rev, 2008, 37, 1127.
[38]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett.,1986, 27, 4945. b) Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The rapid synthesis of organic compounds in microwave ovens. Tetrahedron Lett., 1986, 27, 279.
[39]
Oliver Kappe, C. Controlled microwave heating in modern organic synthesis.Chem., Int. Ed., 2005, 43, 6250. Oliver Kappe, C. Microwaves in organic and medicinal chemistry; Stadler, A. Wiley-VCH: Weinheim, 2005.
[40]
Loupy, A.; Bram, G. Sansoulet, Chemical syntheses by means of microwave digestion as a focused open-vessel system: Structural properties of oxides and hydroxides as powders. J. New J. Chem., 1992, 16, 233.
[41]
Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58, 1235.
[http://dx.doi.org/10.1016/S0040-4020(01)01216-9]
[42]
Diaz-Ortiz, A.; Langa, F.; de la Hoz, A.; Moreno, A. Cycloadditions under microwave irradiation conditions: Methods and applications. Eur. J. Org. Chem., 2000, 4, 3659.
[43]
Elander, N.; Jones, J.R.; Lu, S.Y.; Stone-Elander, S. Microwave-enhanced radiochemistry. Chem. Soc. Rev., 2000, 29, 239.
[http://dx.doi.org/10.1039/a901713e]
[44]
Langa, F.; de la Cruz, P.; Espildora, E.; Garcia, J.J.; Garcia, J.J.; Perez, M.C.; de la Hoz, A. Fullerene chemistry under microwave irradiation. Carbon, 2000, 38, 1641.
[http://dx.doi.org/10.1016/S0008-6223(99)00284-5]
[45]
Langa, F.; de la Cruz, P.; Espildora, E.; de la Hoz, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects., 2000, 9, 168.
[46]
Zong, L.; Zhou, S.; Sgriccia, N.; Hawley, M.C.; Kempel, L.C. A review of microwave-assisted polymer chemistry (MAPC). J. Microw. Power Electromagn. Energy, 2003, 38(1), 49-74.
[http://dx.doi.org/10.1080/08327823.2003.11688487] [PMID: 14598726]
[47]
Xu, Y.; Guo, Q-X. Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles, 2004, 63, 903.
[http://dx.doi.org/10.3987/REV-03-574]
[48]
Romanova, N.N.; Kudan, P.V.; Gravis, A.G.; Bundel, Y.G. Advances in organic synthesis. Chem. Heterocycl. Compd., 2000, 36, 1130.
[http://dx.doi.org/10.1023/A:1002898029145]
[49]
Das, S.K. Application of microwave irradiation in the synthesis of carbohydrates. Synlett, 2004, 915.
[http://dx.doi.org/10.1055/s-2004-820034]
[50]
Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted chemistry of carbohydrates. Curr. Org. Chem., 2004, 8, 511.
[http://dx.doi.org/10.2174/1385272043485828]
[51]
Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35(9), 717-727.
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
[52]
Will, H.; Scholz, P.; Ondruschka, B. Heterogene gasphasenkatalyse im mikrowellenfeld. Chemieingenieurtechnik (Weinh.), 2002, 74, 1057.
[http://dx.doi.org/10.1002/1522-2640(20020815)74:8<1057:AID-CITE1057>3.0.CO;2-3]
[53]
Kappe, C.O. High-speed combinatorial synthesis utilizing microwave irradiation. Curr. Opin. Chem. Biol., 2002, 6(3), 314-320.
[http://dx.doi.org/10.1016/S1367-5931(02)00306-X] [PMID: 12023111]
[54]
Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discov. Today, 2001, 6(8), 406-416.
[http://dx.doi.org/10.1016/S1359-6446(01)01735-4] [PMID: 11301285]
[55]
Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem., 2002, 4(2), 95-105.
[http://dx.doi.org/10.1021/cc010048o] [PMID: 11886281]
[56]
Cotterill, I. C.; Usyatinsky, A. Y.; Arnold, J.M.; Clark, D. S.; Dordick, J.S.; Michels, P.C.; Khmelnitsky, Y. L. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahed. Lett., 39, 10, 5, 1998, 1117-1120.
[57]
Wathey, B.; Tierney, J.; Lidström, P.; Westman, J. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov. Today, 2002, 7(6), 373-380.
[http://dx.doi.org/10.1016/S1359-6446(02)02178-5] [PMID: 11893546]
[58]
Varma, R.S. Solvent-free organic syntheses on mineral supports using microwave irradiation. Clean Prod. Process., 1999, 132.
[59]
Varma, R.S. Astra Zeneca Research Foundation; Kavitha Printers: Bangalore, India, 2002.
[60]
Metaxis, A.C.; Meredith, R.J. Industrial Microwave heatin; Peregrinus: London, 1988.
[http://dx.doi.org/10.1049/PBPO004E]
[61]
Bezdushna, E.; Ritter, H. Recent advances in microwave-assisted polymer synthesis. Macromol. Rapid Commun., 2007, 28, 443.
[http://dx.doi.org/10.1002/marc.200600716]
[62]
Loupy, A.; Perreux, L.; Liagre, M.; Burle, K.; Moneuse, M. Microwave assisted synthesis of 1, 5-disubstituted hydantoins and thiohydantoins in solvent-free conditions. Pure Appl. Chem., 2001, 73, 161.
[http://dx.doi.org/10.1351/pac200173010161]
[63]
Carsten, K.; Iannelli, M.; Kerep, P.; Klink, M.; Schmitz, S.; Sinwell, S. Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer–Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Tetrahedron, 2006, 62, 4709.
[http://dx.doi.org/10.1016/j.tet.2006.01.102]
[64]
Barreto.; Angélica de Fátima, S.; Vercillo, Otilie, E.; Andrade, C, Z. Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer–Villiger oxidation, oxazoline polymerization, acrylamide, and porous materials. J. Braz. Chem. Soc., 2011, 22, 462.
[65]
Hugel Helmut, M. Microwave Multicomponent. Molecules, 2009, 14, 4936.
[http://dx.doi.org/10.3390/molecules14124936]
[66]
Santra, S.; Andreana, P.R. Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer–Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Org. Lett., 2007, 9, 5035.
[http://dx.doi.org/10.1021/ol702256t] [PMID: 17956113]
[67]
Polshettiwar, V.; Nadagouda, M.N.; Aus Varma, R.S. Microwave-assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. J. Chem., 2009, 62, 16.
[68]
Virkutyte, J.; Varma, R.S. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. (Camb.), 2011, 2, 837.
[http://dx.doi.org/10.1039/C0SC00338G]
[69]
Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res., 2011, 44(7), 469-478.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[70]
Kou, J.; Varma, R.S. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem, 2012, 5(12), 2435-2441.
[http://dx.doi.org/10.1002/cssc.201200477] [PMID: 22945662]
[71]
Baruwati, B.; Varma, R.S. High value products from waste: Grape pomace extract--a three-in-one package for the synthesis of metal nanoparticles. ChemSusChem, 2009, 2(11), 1041-1044.
[http://dx.doi.org/10.1002/cssc.200900220] [PMID: 19842157]
[72]
Baruwati, B.; Polshettiwar, V.; Varma, R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem., 2009, 11, 926.
[http://dx.doi.org/10.1039/b902184a]
[73]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[74]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: A benign pathway to sustainability. ChemSusChem, 2014, 7(1), 24-44.
[http://dx.doi.org/10.1002/cssc.201300485] [PMID: 24357535]
[75]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[76]
Gawande, M.B.; Branco, P.S. An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media. Green Chem., 2011, 13, 3355.
[http://dx.doi.org/10.1039/c1gc15868f]
[77]
Polshettiwar, V.; Varma, R.S. Tandem bis-aldol reaction of ketones: a facile one-pot synthesis of 1,3-dioxanes in aqueous medium. J. Org. Chem., 2007, 72(19), 7420-7422.
[http://dx.doi.org/10.1021/jo701337j] [PMID: 17696550]
[78]
(a) Varma, R.S.; Clark, D.E.; Sutton, W.H.; Lewis, D.A., Eds.; Solvent-free organic syntheses. using supported reagents and microwave irradiation; American Ceramic Society: Westerville, OH,, 1997, p. 357.
(b) Varma, R. Sodium borohydride on wet clay: Solvent-free reductive amination of carbonyl compounds using microwaves. Tetrahedron, 1998, 54, 6293.
[http://dx.doi.org/10.1016/S0040-4020(98)00326-3]
(c) Varma, R.S.; Meshram, H.M. Tetrahedron Lett., 1997, 38, 7973.
[http://dx.doi.org/10.1016/S0040-4039(97)10143-5]
[79]
(a)Moseley, J.D.; Kappe, C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem., 2011, 13, 794.
[http://dx.doi.org/10.1039/c0gc00823k]
(b)Lidstrom, P.; Tierney, J.; Warthey, B.; Westman, J. Microwave assisted organic synthesisÐa review. Tetrahedron, 2011, 57, 9225.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[80]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: A conceptually sustainable organocatalyst. Chem. Commun. (Camb.), 2009, (14), 1837-1839.
[http://dx.doi.org/10.1039/b900784a] [PMID: 19319418]
[81]
Polshettiwar, V.; Varma, R.S. Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis. Tetrahedron, 2010, 66, 1091.
[http://dx.doi.org/10.1016/j.tet.2009.11.015]
[82]
Vaddula, B.R.; Varma, R.S.; Leazer, J. Mixing with microwaves: Solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett., 2013, 54, 1538.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[83]
Sedelmeier, J.; Ley, S.V.; Lange, H.; Baxendale, I.R. Pd‐EnCatTM TPP30 as a catalyst for the generation of highly functionalized aryl‐ and alkenyl‐substituted acetylenes via microwave‐assisted sonogashira type. Eur. J. Org. Chem., 2009, 4412.
[http://dx.doi.org/10.1002/ejoc.200900344]
[84]
Qu, G.R.; Xin, P.Y.; Niu, H.Y.; Jin, X.; Guo, X.T.; Yang, X.N.; Guo, H.M. Microwave promoted palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of 6-chloropurines with sodium tetraarylborate in water. Tetrahedron, 2011, 67, 9099.
[http://dx.doi.org/10.1016/j.tet.2011.09.082]
[85]
Page, P.C.B.; Appleby, L.F.; Day, D.; Chan, Y.; Buckley, B.R.; Allin, S.M.; McKenzie, M.J. Highly enantioselective total synthesis of (-)-(3‘S)-Lomatin and (+)-(3’S,4'R)-trans-khellactone. Org. Lett., 2009, 11(9), 1991-1993.
[http://dx.doi.org/10.1021/ol900444h] [PMID: 19354231]
[86]
Barthakur, M.G.; Hasib, A.; Gogoi, J.; Boruah, R.C. A convenient strategy for the annulation of aryl scaffold to A/B-ring steroids under microwave irradiation. Steroids, 2010, 75, 445.
[87]
Dahmani, S.; Rahmouni, M.; Brugidou, R.; Bazureau, J.P.; Hamelin, J. A new route to α-hetero β-enamino esters using a mild and convenient solvent-free process assisted by focused microwave irradiation. Tetrahedron Lett., 1998, 39, 8453.
[http://dx.doi.org/10.1016/S0040-4039(98)01894-2]
[88]
Bogda, D.; Pielichowski, P. Borona, Remarkable fast microwave-assisted N-alkylation of phthalimide in dry media. A. Synlett, 1996, 873.
[http://dx.doi.org/10.1055/s-1996-5587]
[89]
Williams, D.F. On the nature of biomaterials. Biomaterials, 2009, 30(30), 5897-5909.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.027] [PMID: 19651435]
[90]
Kohn, J.; Welsh, W.J.; Knight, D. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials, 2007, 28(29), 4171-4177.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.022] [PMID: 17644176]
[91]
Danson, S.; Ferry, D.; Alakhov, V.; Margison, J.; Kerr, D.; Jowle, D.; Brampton, M.; Halbert, G.; Ranson, M. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer, 2004, 90(11), 2085-2091.
[http://dx.doi.org/10.1038/sj.bjc.6601856] [PMID: 15150584]
[92]
Ebner, C.; Bodner, T.; Stelzer, F.; Wiesbrock, F. One decade of microwave-assisted polymerizations: quo vadis? Macromol. Rapid Commun., 2011, 32(3), 254-288.
[http://dx.doi.org/10.1002/marc.201000539] [PMID: 21433172]
[93]
Guo, Y.; Zhou, J.; Song, Y.; Zhang, L. An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol. Rapid Commun., 2009, 30(17), 1504-1508.
[http://dx.doi.org/10.1002/marc.200900238] [PMID: 21638412]
[94]
Sosnik, A.; Gotelli, G.; Abraham, G.A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: How new and how powerful. Prog. Polym. Sci., 2010, 36, 1050.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.001]
[95]
Bremer, R.E.; Szewczyk, J.W.; Baird, E.E.; Dervan, P.B. Recognition of the DNA minor groove by pyrrole-imidazole polyamides: Comparison of desmethyl- and N-methylpyrrole. Bioorg. Med. Chem., 2000, 8(8), 1947-1955.
[http://dx.doi.org/10.1016/S0968-0896(00)00145-0] [PMID: 11003140]
[96]
Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discov. Today, 2001, 6(8), 406-416.
[http://dx.doi.org/10.1016/S1359-6446(01)01735-4] [PMID: 11301285]
[97]
Stadler, A.; Kappe, C.O. Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation. J. Comb. Chem., 2001, 3(6), 624-630.
[http://dx.doi.org/10.1021/cc010044j] [PMID: 11703160]
[98]
Lill, J.R. Microwave assisted proteomics; RSC Publishing: Cambridge, 2009.
[99]
Lill, J.R.; Ingle, E.S.; Liu, P.S.; Pham, V.; Sandoval, W.N. Microwave-assisted proteomics. Mass Spectrom. Rev., 2007, 26(5), 657-671.
[http://dx.doi.org/10.1002/mas.20140] [PMID: 17474122]
[100]
Zhao, H. Aqueous microwave assisted chemistry.; Cambridge: RSC Publishing,, 2010, 123.
[101]
Sandoval, W.N.; Pham, V.C.; Lill, J.R. Recent developments in microwave-assisted protein chemistries - can this be integrated into the drug discovery and validation process? Drug Discov. Today, 2008, 13(23-24), 1075-1081.
[http://dx.doi.org/10.1016/j.drudis.2008.08.007] [PMID: 18801456]
[102]
Sandoval, W.N.; Pham, V.; Ingle, E.S.; Liu, P.S.; Lill, J.R. Applications of microwave-assisted proteomics in biotechnology. Comb. Chem. High Throughput Screen., 2007, 10(9), 751-765.
[http://dx.doi.org/10.2174/138620707783018504] [PMID: 18478957]
[103]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[104]
Orru, R.V.A.; Greef, M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 1471.
[http://dx.doi.org/10.1055/s-2003-40507]
[105]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[106]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[107]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[108]
Colombo, M.; Peretto, I. Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov. Today, 2008, 13(15-16), 677-684.
[http://dx.doi.org/10.1016/j.drudis.2008.03.007] [PMID: 18675762]
[109]
Nicolaov, K.C.; Chen, S.I. The art of total synthesis through cascade reactions. Chem. Soc. Rev., 2009, 38, 2293.
[110]
(a)Strecker, A. Justus Liebigs Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann. Chem., 1850, 75, 27.
[http://dx.doi.org/10.1002/jlac.18500750103]
(b)Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[111]
Gawande, M.B.; Bonifacio, V.D.B.; Varma, R.S.; Nogueira, I.D.; Bundaleski, N.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst–applications in multicomponent reactions under benign conditions. Green Chem., 2013, 15, 1226.
[http://dx.doi.org/10.1039/c3gc40375k]
[112]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: room temperature synthesis of pyrazoles and diazepines in aqueous medium. Tetrahedron Lett., 2008, 49, 397.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.017]
[113]
Brauch, S.; van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[114]
Park, H.; Hwang, K.Y.; Kim, Y.H.; Oh, K.H.; Lee, J.Y.; Kim, K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg. Med. Chem. Lett., 2008, 18(13), 3711-3715.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.056] [PMID: 18524587]
[115]
Shi, F.; Li, C.M.; Xia, M.; Miao, K.J.; Zhao, Y.X.; Tu, S.J.; Zheng, W.F.; Zhang, G.; Ma, N. a nhc-involved, cascade, metal-free, and three-component synthesis of 2, 3-diarylated fully substituted furans under solvent-free conditions. Bioorg. Med. Chem. Lett., 2009, 19, 5565.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.046]
[116]
Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg. Med. Chem. Lett., 2011, 21(7), 2125-2128.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.122] [PMID: 21320779]
[117]
Sarma, R.; Prajapati, D. Microwave-promoted efficient synthesis of dihydroquinazolines. Green Chem., 2011, 13, 718.
[http://dx.doi.org/10.1039/c0gc00838a]
[118]
Barthakur, M.G.; Hasib, A.; Gogoi, J.; Boruah, R.C. A convenient strategy for the annulation of aryl scaffold to A/B-ring steroids under microwave irradiation. Steroids, 2010, 75(6), 445-449.
[http://dx.doi.org/10.1016/j.steroids.2010.02.009] [PMID: 20178810]
[119]
Santa, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Org. Chem. Int., 2014.
[120]
Wannberg, J.; Dallinger, D.; Kappe, C.O.; Larhed, M. Microwave-enhanced and metal-catalyzed functionalizations of the 4-aryl-dihydropyrimidone template. J. Comb. Chem., 2005, 7(4), 574-583.
[http://dx.doi.org/10.1021/cc049816c] [PMID: 16004501]
[121]
Tu, S.; Zhang, J.; Jia, R.; Jiang, B.; Zhang, Y.; Jiang, H. An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives. Org. Biomol. Chem., 2007, 5(9), 1450-1453.
[http://dx.doi.org/10.1039/b617201f] [PMID: 17464415]
[122]
Legeay, J.C.; Eynde, J.J.V.; Bazureau, J.P. Ionic liquid phase technology supported the three component synthesis of Hantzsch 1, 4-dihydropyridines and Biginelli 3, 4-dihydropyrimidin-2 (1H)-ones under. Tetrahedron, 2005, 61, 12386.
[http://dx.doi.org/10.1016/j.tet.2005.09.118]
[123]
Gonzalez-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. pplication of (1S, 4S)-2, 5-diazabicyclo [2.2. 1] heptane derivatives in asymmetric organocatalysis: the Biginelli reaction. ARKIVOC, 2008, vi, 61.
[124]
Santra, S.; Andreana, P.R.A. A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades. Org. Lett., 2007, 9(24), 5035-5038.
[http://dx.doi.org/10.1021/ol702256t] [PMID: 17956113]
[125]
Dimauro, E.F.; Kennedy, J.M. Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J. Org. Chem., 2007, 72(3), 1013-1016.
[http://dx.doi.org/10.1021/jo0622072] [PMID: 17253825]
[126]
Xing, X.; Wu, J.; Feng, G.; Dai, W-M. Microwave-assisted one-pot U-4CR and intramolecular O-alkylation toward heterocyclic scaffolds. Tetrahedron, 2006, 62, 6774.
[http://dx.doi.org/10.1016/j.tet.2006.05.001]
[127]
Bremner, W.S.; Organ, M.G. Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J. Comb. Chem., 2007, 9(1), 14-16.
[http://dx.doi.org/10.1021/cc060130p] [PMID: 17206827]
[128]
Sakal, S.B.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1754.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.140]
[129]
Liu, J.F.; Ye, P.; Zhang, B.; Bi, G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C.M. Three-component one-pot total syntheses of glyantrypine, fumiquinazoline F, and fiscalin B promoted by microwave irradiation. J. Org. Chem., 2005, 70(16), 6339-6345.
[http://dx.doi.org/10.1021/jo0508043] [PMID: 16050695]
[130]
Liu, J.F.; Kaselj, M.; Isome, Y.; Chapnick, J.; Zhang, B.; Bi, G.; Yohannes, D.; Yu, L.; Baldino, C.M. Microwave-assisted concise total syntheses of quinazolinobenzodiazepine alkaloids. J. Org. Chem., 2005, 70(25), 10488-10493.
[http://dx.doi.org/10.1021/jo051876x] [PMID: 16323862]
[131]
Chaplin, J.H.; Flynn, B.L. An efficient synthesis and substitution of 3-aroyl-2-bromobenzo[b]furans. Chem. Commun., 2001, 57, 1594.
[http://dx.doi.org/10.1039/b104624c]
[132]
Kerr, D.J.; Willis, A.C.; Flynn, B.L. Multicomponent coupling approach to (+/-)-frondosin B and a ring-expanded analogue. Org. Lett., 2004, 6(4), 457-460.
[http://dx.doi.org/10.1021/ol035822q] [PMID: 14961597]
[133]
Xiang, Z.; Luo, T.; Lu, K.; Cui, J.; Shi, X.; Fathi, R.; Chen, J.; Yang, Z. Concise synthesis of isoquinoline via the Ugi and Heck reactions. Org. Lett., 2004, 6(18), 3155-3158.
[http://dx.doi.org/10.1021/ol048791n] [PMID: 15330611]
[134]
Le Bas, M.D.H.; O’Shea, D.F. Parallel microwave-assisted library of imidazothiazol-3-ones and imidazothiazin-4-ones. J. Comb. Chem., 2005, 7(6), 947-951.
[http://dx.doi.org/10.1021/cc0500856] [PMID: 16283806]
[135]
Gelens, E.; De Kanter, F.J.J.; Schmitz, R.F.; Sliedregt, L.A.J.M.; Van Steen, B.J.; Kruse, C.G.; Leurs, R.; Groen, M.B.; Orru, R.V.A. Efficient library synthesis of imidazoles using a multicomponent reaction and microwave irradiation. Mol. Divers., 2006, 10(1), 17-22.
[http://dx.doi.org/10.1007/s11030-006-8695-3] [PMID: 16404525]
[136]
Quiroga, J.; Cisneros, C.; Insuasty, B.; Abonia, R.; Nogueras, M.; Sanchez, A. A regiospecific three-component one-step cyclocondensation to 6-cyano-5, 8-dihydropyrido [2, 3-d] pyrimidin-4 (3H)-ones. Using microwaves under solvent-free. Tetrahedron Lett., 2001, 42, 5625.
[http://dx.doi.org/10.1016/S0040-4039(01)01092-9]
[137]
Bora, U.; Saikia, A.; Boruah, R.C. A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction. Org. Lett., 2003, 5(4), 435-438.
[http://dx.doi.org/10.1021/ol020238n] [PMID: 12583737]
[138]
Borah, P.; Borah, J.M.; Chowdhury, P. Microwave (MW) irradiated Ugi four-component reaction (Ugi-4CR): Expedited synthesis of steroid-amino acid conjugates--A novel class of hybrid compounds. Steroids, 2015, 98, 49-57.
[http://dx.doi.org/10.1016/j.steroids.2015.02.012] [PMID: 25701096]
[139]
Borah, P.; Begum, A.; Chowdhury, P. Microwave energy in Ugi four-component reaction (Ugi-4CR): Expedient synthesis of steroid-peptide conjugates based on aminosteroids-An important class of hybrid molecules. Curr. Org. Synth., 2016, 13, 1-7.
[http://dx.doi.org/10.2174/1570179413666160204235819]
[140]
Strauss, C.R. Microwave-assisted reactions in organic synthesis-are there any nonthermal microwave effects? Response to the highlight by N. Kuhnert. Angew. Chem. Int. Ed. Engl. 2002, 41(19), 3589-3591., 3513.
[http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3589::AIDANIE3589>3.0.CO;2-Q] [PMID: 12370900]
[141]
Kuhnert, N. Microwave-assisted reactions in organic synthesis--are there any nonthermal microwave effects? Angew. Chem. Int. Ed. Engl., 2002, 41(11), 1863-1866.
[http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1863:AID-ANIE1863>3.0.CO;2-L] [PMID: 19750616]
[142]
Perreux, L.; Loupy, A. A tentative rationalisation of microwave effects in organic synthesis according to the reaction medium, and mechanistic consideration. Tetrahedron, 2001, 57, 9199.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X]
[143]
Jacob, J.; Chia, L.H.L.; Boey, F.Y.C. Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci., 1995, 30, 5321.
[http://dx.doi.org/10.1007/BF00351541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy