Skip to main content
Log in

CO2 biofixation and fatty acid composition of two indigenous Dunaliella sp. isolates (ABRIINW-CH2 and ABRIINW-SH33) in response to extremely high CO2 levels

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Global warming, as a result of atmospheric CO2 increase, is regarded as an important universal concern. Microalgae are considered as appropriate microorganisms for CO2 assimilation. Here we aimed to investigate carbon biofixation ability of two indigenous isolates of Dunaliella spp. (ABRIINW-CH2 and ABRIINW-SH33) under elevated CO2 concentrations of 10, 20, and 30% (v/v) as well as their lipid content, productivity, and fatty acid profile under adjusted pH conditions. The maximum biomass production and CO2 biofixation rates were obtained under 10% CO2. High CO2 concentrations were favorable for the accumulation of lipids, lipid productivity, and polyunsaturated fatty acids formation. The highest lipid content and lipid productivity was obtained at 10% CO2. The highest fraction of the fatty acids (FA) profile was allocated to omega-3 FAs at 20% CO2. Accordingly, these isolates were able to tolerate extremely high CO2 concentrations and present even enhanced growth as well as formation of valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SFAs :

Saturated fatty acids

MUFAs :

Monounsaturated fatty acids

UFAs :

Unsaturated fatty acids

LC PUFAs :

Long-chain polyunsaturated fatty acids

DW :

Dry weight

DU :

Degree of unsaturation

n-3 :

Omega-3

n-6 :

Omega-6

ABRIINW :

Agricultural Biotechnology Research Institute of Iran West and Northwest Region

ROS :

Reactive oxygen species

References

  1. Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Biores Technol 100:833–838

    CAS  Google Scholar 

  2. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, p 151

  3. Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Biores Technol 184:190–201

    CAS  Google Scholar 

  4. Assunção J, Batista AP, Manoel J, da Silva TL, Marques P, Reis A, Gouveia L (2017) CO2 utilization in the production of biomass and biocompounds by three different microalgae. Eng Life Sci 50:262–267

    Google Scholar 

  5. Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–response surface methodology analysis. Energy Convers Manage 50:262–267

    CAS  Google Scholar 

  6. Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sustain Energy Rev 76:1163–1175

    CAS  Google Scholar 

  7. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    CAS  Google Scholar 

  8. Khan SA, Hussain MZ, Prasad S, Banerjee U (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372

    CAS  Google Scholar 

  9. De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    PubMed  Google Scholar 

  10. Zhang Y, Zhao B, Xiong K, Zhang Z, Liu T (2010) CO2 emission reduction from power plant flue gas by micro-algae: a preliminary study. In: 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, pp 1–4

  11. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different co2 levels. Biores Technol 102:3071–3076

    CAS  Google Scholar 

  12. Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari O, Das P, Gayen K, Mandal M, Halder G (2017) Production of biodiesel from microalgae through biological carbon capture. Biotech Rev 3(7):99

    Google Scholar 

  13. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    CAS  PubMed  Google Scholar 

  14. Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198

    CAS  PubMed  Google Scholar 

  15. Herzog H, Golomb D (2004) Carbon capture and storage from fossil fuel use. Encyclo Energy 1:277–287

    Google Scholar 

  16. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  17. Chagas A, Rios A, Jarenkow A, Marcílio N, Ayub M, Rech R (2015) Production of carotenoids and lipids by Dunaliella tertiolecta using CO2 from beer fermentation. Process Biochem 50:981–988

    CAS  Google Scholar 

  18. Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotech Lett 35:1745–1752

    CAS  Google Scholar 

  19. Semenenko VE, Vladimirova MG, Tsoglin LN, Popova MA (1966) Growth, productivity, and the photosynthesis rate of chlorella culture as dependent on the CO2 concentration in gas mixture and on the specific rate of air inflow, controlled biosynthesis. In: Ierusalimskii ND, Kovrov BG (eds) Nauka, Moscow, pp 128–136

  20. Georgianna DR, Hannon MJ, Marcuschi M, Wu S, Botsch K, Lewis AJ, Hyun J, Mendez M, Mayfield SP (2013) Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res 2:2–9

    Google Scholar 

  21. Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sustain Energy Rev 27:622–653

    CAS  Google Scholar 

  22. Razzak SA, Al-Aslani I, Hossain MM (2016) Hydrodynamics and mass transfer of CO2 in water in a tubular photobioreactor. Eng Life Sci 16:355–363

    CAS  Google Scholar 

  23. Assunção J, Batista AP, Manoel J, da Silva TL, Marques P, Reis A, Gouveia L (2017) CO2 utilization in the production of biomass and biocompounds by three different microalgae. Eng Life Sci 17:1126–1135

    PubMed  PubMed Central  Google Scholar 

  24. Fraeye I, Bruneel C, Lemahieu C, Buyse J, Muylaert K, Foubert I (2012) Dietary enrichment of eggs with omega-3 fatty acids: a review. Food Res Int 48:961–969

    CAS  Google Scholar 

  25. Kay RA, Barton LL (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573

    CAS  PubMed  Google Scholar 

  26. Buckley JD, Howe PR (2010) Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity—a review. Nutrients 2:1212–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    CAS  PubMed  Google Scholar 

  28. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Systems 1:2

    PubMed  PubMed Central  Google Scholar 

  29. Seckbach J, Gross H, Nathan M (1971) Growth and photosynthesis of cyanidium caldarium cultured under pure CO2. Israel J Bot 10:1

    Google Scholar 

  30. Kodama M (1993) A new species of highly CO2 tolerant fast growing marine microalga suitable for high-density culture. J Mar Biotechnol 1:21–25

    Google Scholar 

  31. Sergeenko T, Muradyan E, Pronina N, Klyachko-Gurvich G, Mishina I, Tsoglin L (2000) The effect of extremely high CO2 concentration on the growth and biochemical composition of microalgae. Russ J Plant Physiol 47:632–638

    CAS  Google Scholar 

  32. Perchorowicz JT, Raynes DA, Jensen RG (1981) Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci 78:2985–2989

    CAS  PubMed  Google Scholar 

  33. Sage RF, Sharkey TD, Seemann JR (1988) The in-vivo response of the ribulose-1, 5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174:407–416

    CAS  PubMed  Google Scholar 

  34. Woodrow IE, Berry J (1988) Enzymatic regulation of photosynthetic CO2, fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39:533–594

    CAS  Google Scholar 

  35. Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999–1006

    CAS  Google Scholar 

  36. Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14:169–184

    CAS  Google Scholar 

  37. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Biores Technol 102:4945–4953

    CAS  Google Scholar 

  38. Lee J-N, Lee J-S, Shin C-S, Park S-C, Kim S-W (2000) Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Springer, Twenty-first symposium on biotechnology for fuels and chemicals

    Google Scholar 

  39. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Biores Technol 128:359–364

    CAS  Google Scholar 

  40. Westerhoff P, Hu Q, Esparza-Soto M, Vermaas W (2010) Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ Technol 31:523–532

    CAS  PubMed  Google Scholar 

  41. Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Convers Manage 52:3132–3136

    CAS  Google Scholar 

  42. Duarte JH, de Morais EG, Radmann EM, Costa JAV (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Biores Technol 234:472–475

    CAS  Google Scholar 

  43. Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO 2 concentration. Russ J Plant Physiol 51:53–62

    CAS  Google Scholar 

  44. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Google Scholar 

  45. Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    CAS  Google Scholar 

  46. Chen M, Tang H, Ma H, Holland TC, Ng KS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Biores Technol 102:1649–1655

    CAS  Google Scholar 

  47. Riebesell U, Wolf-Gladrow D, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251

    CAS  Google Scholar 

  48. Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    CAS  Google Scholar 

  49. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions. Photosynth Res 77:139–153

    CAS  PubMed  Google Scholar 

  50. Hejazi M, Wijffels R (2003) Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomol Eng 20:171–175

    CAS  PubMed  Google Scholar 

  51. Solovchenko A, Gorelova O, Selyakh I, Pogosyan S, Baulina O, Semenova L, Chivkunova O, Voronova E, Konyukhov I, Scherbakov P (2015) A novel CO2-tolerant symbiotic desmodesmus (Chlorophyceae, Desmodesmaceae): acclimation to and performance at a high carbon dioxide level. Algal Res 11:399–410

    Google Scholar 

  52. Moghimifam R, Niknam V, Ebrahimzadeh H, Hejazi MA (2019) The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33). J Appl Phycol 2:1–13

    Google Scholar 

  53. Patil L, Kaliwal B (2017) Effect of CO 2 concentration on growth and biochemical composition of newly isolated indigenous microalga Scenedesmus bajacalifornicus BBKLP-07. Appl Biochem Biotechnol 182:335–348

    CAS  PubMed  Google Scholar 

  54. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Biores Technol 118:61–66

    CAS  Google Scholar 

  55. Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Biores Technol 139:149–154

    CAS  Google Scholar 

  56. Razzak S (2019) In situ biological CO2 fixation and wastewater nutrient removal with Neochloris oleoabundans in batch photobioreactor. Bioprocess Biosyst Eng 42:93–105

    CAS  PubMed  Google Scholar 

  57. Singh D, Yadav K, Singh R (2015) Biofixation of carbon dioxide using mixed culture of microalgae. Indian J Biotechnol 14:228–232

    CAS  Google Scholar 

  58. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  59. Cheng YS, Labavitch J, VanderGheynst J (2015) Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus chlorella. Lett Appl Microbiol 60:1–7

    PubMed  Google Scholar 

  60. Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    CAS  PubMed  Google Scholar 

  61. Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Frontiers Microbiol 6:1376

    Google Scholar 

  62. Eloka-Eboka AC, Inambao FL (2017) Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy 195:1100–1111

    CAS  Google Scholar 

  63. Neves FdF, Hoinaski L, Rörig LR, Derner RB, de Melo LH (2018) Carbon biofixation and lipid composition of an acidophilic microalga cultivated on treated wastewater supplied with different CO2 levels. Environ technol 2:1–31

    Google Scholar 

  64. Tsuzuki M, Gantar M, Aizawa K, Miyachi S (1986) Ultrastructure of Dunaliellatertiolecta cells grown under low and high CO2 concentrations. Plant Cell Physiol 27:737–739

    Google Scholar 

  65. Giordano M, Davis JS, Bowes G (1994) ORGANIC carbon release by Dunaliella Salina (Chlorophyta) under different growth conditions of CO2, nitrogen, and salinity 1. J Phycol 30:249–257

    CAS  Google Scholar 

  66. Giordano M (2001) Interactions between C and N metabolism in Dunaliella salina cells cultured at elevated CO2 and high N concentrations. J Plant Physiol 158:577–581

    CAS  Google Scholar 

  67. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Bio Sci 363:2641–2650

    CAS  Google Scholar 

  68. Suzuki T, Matsuo T, Ohtaguchi K, Koide K (1995) Gas-sparged bioreactors for CO2 fixation by Dunaliella tertiolecta. J Chem Technol Biotechnol 62:351–358

    CAS  Google Scholar 

  69. Tang H, Abunasser N, Garcia M, Chen M, Ng KS, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330

    CAS  Google Scholar 

  70. Kim W, Park JM, Gim GH, Jeong S-H, Kang CM, Kim D-J, Kim SW (2012) Optimization of culture conditions and comparison of biomass productivity of three green algae. Bio Biosyst Eng 35:19–27

    CAS  Google Scholar 

  71. Kadam KL (2001) Microalgae production from power plant flue gas: environmental implications on a life cycle basis. National Renewable Energy Lab, Golden, CO (US)

    Google Scholar 

  72. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Biores Technol 101:6797–6804

    CAS  Google Scholar 

  73. Adamczyk M, Lasek J, Skawińska A (2016) CO2 Biofixation and growth kinetics of chlorella vulgaris and nannochloropsis gaditana. Appl Biochem Biotechnol 179:1248–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO 2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manage 6(36):717–720

    Google Scholar 

  75. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348

    CAS  Google Scholar 

  76. Jeon H, Lee Y, Chang KS, Lee C-G, Jin E (2013) Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. J Microbiol 51:773–776

    CAS  PubMed  Google Scholar 

  77. Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod Biorefin 4:287–295

    CAS  Google Scholar 

  78. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang Y, Beardall J, Heraud P (2006) Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologial 45:605–615

    Google Scholar 

  80. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    CAS  Google Scholar 

  81. Simopoulos AP (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8:128

    PubMed  PubMed Central  Google Scholar 

  82. Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP (2016) Vegetable oil blending: a review of physicochemical, nutritional and health effects. Trends Food Sci Technol 57:52–58

    CAS  Google Scholar 

  83. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    CAS  PubMed  Google Scholar 

  84. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei HH, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Google Scholar 

  86. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  87. Ratledge C (2010) Single-cell oils for the 21st century. In: Single-cell oils. Elsevier

  88. Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826

    CAS  Google Scholar 

  89. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters1. J Phycol 38:325–331

    CAS  Google Scholar 

  90. Cerón M, García-Malea MdC, Rivas J, Acien F, Fernandez J, Del Río E, Guerrero M, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112

    PubMed  Google Scholar 

  91. Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312

    CAS  Google Scholar 

  92. Fryer M (1992) The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this research was provided equally by Agricultural Biotechnology Institutes, Biotechnology Development Council of Iran and University of Tehran. Further, we would like to thank Nahid Hoseinzadeh for her helpful suggestions in preparing this paper.

Author information

Authors and Affiliations

Authors

Contributions

RM: performed experiments, analyzed data, and wrote the manuscript. VN: supervised the project. HE: helped supervise the project. MAH: supervised the project and co-wrote the paper. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding authors

Correspondence to Vahid Niknam or Mohammad Amin Hejazi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghimifam, R., Niknam, V., Ebrahimzadeh, H. et al. CO2 biofixation and fatty acid composition of two indigenous Dunaliella sp. isolates (ABRIINW-CH2 and ABRIINW-SH33) in response to extremely high CO2 levels. Bioprocess Biosyst Eng 43, 1587–1597 (2020). https://doi.org/10.1007/s00449-020-02350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02350-4

Keywords

Navigation