Skip to main content
Log in

Disruption of hepatocyte Sialylation drives a T cell-dependent pro-inflammatory immune tone

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Through the catalysis of α2,6-linked sialylation, the enzyme ST6Gal1 is thought to play key roles in immune cell communication and homeostasis. Of particular importance, glycans with terminal α2,6-sialic acids are known to negatively regulate B cell receptor signaling and are associated with an immunosuppressive tumor microenvironment that promotes T cell anergy, suggesting that α2,6-sialic acids are a key immune inhibitory signal. Consistent with this model, mice harboring a hepatocyte-specific ablation of ST6Gal1 (H-cKO) develop a progressive and severe non-alcoholic fatty liver disease characterized by steatohepatitis. Using this H-cKO mouse, we have further discovered that loss of hepatocyte α2,6-sialylation not only increases the inflammatory state of the local tissue microenvironment, but also systemic T cell-dependent immune responses. H-cKO mice responded normally to innate and passively induced inflammation, but showed significantly increased morbidity in T cell-dependent house dust mite-antigen (HDM)-induced asthma and myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). We further discovered that H-cKO mice have a profound shift toward effector/memory T cells even among unchallenged mice, and that macrophages from both the liver and spleen expressed the inhibitory and α2,6-sialic acid-specific glycan binding molecule CD22. These findings align with previously reported pro-inflammatory changes in liver macrophages, and support a model in which the liver microenvironment sets a systemic immune tone that is regulated by tissue α2,6-sialylation and mediated by liver macrophages and systemic T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

WBC:

white blood cell

ThioG:

thioglycollate

HDM:

house dust mite

CAIA:

collagen antibody induced arthritis

EAE:

experimental autoimmune encephalomyelitis

MOG:

myelin oligodendrocyte glycoprotein

CFA:

complete Freund’s adjuvant

PTX:

pertussis toxin

LPS:

lipopolysaccharide

PBS:

phosphate buffered saline

ST6Gal1:

β-galactoside α-2,6-sialyltransferase

H-cKO:

hepatocyte conditional knockout of ST6Gal1

Siglec:

sialic acid binding immunoglobulin-type lectin

References

  1. Varki, A.: Biological roles of glycans. Glycobiology. 27(1), 3–49 (2017). https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, J.L., Jones, M.B., Ryan, S.O., Cobb, B.A.: The regulatory power of glycans and their binding partners in immunity. Trends Immunol. 34(6), 290–298 (2013). https://doi.org/10.1016/j.it.2013.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, J.Y., Oswald, D.M., Oliva, K.D., Kreisman, L.S.C., Cobb, B.A.: The Glycoscience of Immunity. Trends Immunol. 39(7), 523–535 (2018). https://doi.org/10.1016/j.it.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varki, A., Gagneux, P.: Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012). https://doi.org/10.1111/j.1749-6632.2012.06517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreisman, L.S., Cobb, B.A.: Infection, inflammation and host carbohydrates: a Glyco-evasion hypothesis. Glycobiology. 22(8), 1019–1030 (2012). https://doi.org/10.1093/glycob/cws070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anthony, R.M., Wermeling, F., Karlsson, M.C., Ravetch, J.V.: Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl. Acad. Sci. U. S. A. 105(50), 19571–19578 (2008). https://doi.org/10.1073/pnas.0810163105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anthony, R.M., Nimmerjahn, F., Ashline, D.J., Reinhold, V.N., Paulson, J.C., Ravetch, J.V.: Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG fc. Science. 320(5874), 373–376 (2008). https://doi.org/10.1126/science.1154315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anthony, R.M., Kobayashi, T., Wermeling, F., Ravetch, J.V.: Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. 475(7354), 110–U133 (2011). https://doi.org/10.1038/nature10134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaneko, Y., Nimmerjahn, F., Ravetch, J.V.: Anti-inflammatory activity of immunoglobulin G resulting from fc sialylation. Science. 313(5787), 670–673 (2006). https://doi.org/10.1126/science.1129594

    Article  CAS  PubMed  Google Scholar 

  10. Cobb, B.A.: The history of IgG glycosylation and where we are now. Glycobiology. (2019). https://doi.org/10.1093/glycob/cwz065

  11. O'Keefe, T.L., Williams, G.T., Davies, S.L., Neuberger, M.S.: Hyperresponsive B cells in CD22-deficient mice. Science. 274(5288), 798–801 (1996). https://doi.org/10.1126/science.274.5288.798

    Article  CAS  PubMed  Google Scholar 

  12. Jellusova, J., Nitschke, L.: Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front. Immunol. 2, 96 (2011). https://doi.org/10.3389/fimmu.2011.00096

    Article  PubMed  Google Scholar 

  13. Doody, G.M., Justement, L.B., Delibrias, C.C., Matthews, R.J., Lin, J., Thomas, M.L., Fearon, D.T.: A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science. 269(5221), 242–244 (1995). https://doi.org/10.1126/science.7618087

    Article  CAS  Google Scholar 

  14. Macauley, M.S., Pfrengle, F., Rademacher, C., Nycholat, C.M., Gale, A.J., von Drygalski, A., Paulson, J.C.: Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123(7), 3074–3083 (2013). https://doi.org/10.1172/JCI69187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garnham, R., Scott, E., Livermore, K.E., Munkley, J.: ST6GAL1: a key player in cancer. Oncol. Lett. 18(2), 983–989 (2019). https://doi.org/10.3892/ol.2019.10458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christie, D.R., Shaikh, F.M., Lucas, J.A.T., Lucas 3rd, J.A., Bellis, S.L.: ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res. 1(1), 3 (2008). https://doi.org/10.1186/1757-2215-1-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Allard, B., Panariti, A., Martin, J.G.: Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front. Immunol. 9, 1777 (2018). https://doi.org/10.3389/fimmu.2018.01777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crispe, I.N.: The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009). https://doi.org/10.1146/annurev.immunol.021908.132629

    Article  CAS  PubMed  Google Scholar 

  19. Oswald, D.M., Jones, M.B., Cobb, B.A.: Modulation of hepatocyte sialylation drives spontaneous fatty liver disease and inflammation. Glycobiology. (2019). https://doi.org/10.1093/glycob/cwz096

  20. Ye, B., Liu, X., Li, X., Kong, H., Tian, L., Chen, Y.: T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 6, e1694 (2015). https://doi.org/10.1038/cddis.2015.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, W., Kuhr, C.S., Zheng, X.X., Carper, K., Thomson, A.W., Reyes, J.D., Perkins, J.D.: New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells. Am. J. Transplant. 8(8), 1639–1651 (2008). https://doi.org/10.1111/j.1600-6143.2008.02300.x

    Article  CAS  PubMed  Google Scholar 

  22. Bertolino, P., McCaughan, G.W., Bowen, D.G.: Role of primary intrahepatic T-cell activation in the 'liver tolerance effect'. Immunol. Cell Biol. 80(1), 84–92 (2002). https://doi.org/10.1046/j.0818-9641.2001.01048.x

    Article  PubMed  Google Scholar 

  23. Crispe, I.N.: Liver antigen-presenting cells. J. Hepatol. 54(2), 357–365 (2011). https://doi.org/10.1016/j.jhep.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  24. Yang, R., Liu, Q., Grosfeld, J.L., Pescovitz, M.D.: Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction. J. Pediatr. Surg. 29(8), 1145–1148 (1994). https://doi.org/10.1016/0022-3468(94)90297-6

    Article  CAS  PubMed  Google Scholar 

  25. Crocker, P.R., Paulson, J.C., Varki, A.: Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7(4), 255–266 (2007). https://doi.org/10.1038/nri2056

    Article  CAS  PubMed  Google Scholar 

  26. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G., Lamers, M.C.: CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7(2), 133–143 (1997). https://doi.org/10.1016/s0960-9822(06)00057-1

    Article  CAS  PubMed  Google Scholar 

  27. Andersson, K.B., Draves, K.E., Magaletti, D.M., Fujioka, S., Holmes, K.L., Law, C.L., Clark, E.A.: Characterization of the expression and gene promoter of CD22 in murine B cells. Eur. J. Immunol. 26(12), 3170–3178 (1996). https://doi.org/10.1002/eji.1830261250

    Article  CAS  PubMed  Google Scholar 

  28. Pluvinage, J.V., Haney, M.S., Smith, B.A.H., Sun, J., Iram, T., Bonanno, L., Li, L., Lee, D.P., Morgens, D.W., Yang, A.C., Shuken, S.R., Gate, D., Scott, M., Khatri, P., Luo, J., Bertozzi, C.R., Bassik, M.C., Wyss-Coray, T.: CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 568(7751), 187–192 (2019). https://doi.org/10.1038/s41586-019-1088-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eichele, D.D., Kharbanda, K.K.: Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23(33), 6016–6029 (2017). https://doi.org/10.3748/wjg.v23.i33.6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Appenheimer, M.M., Huang, R.Y., Chandrasekaran, E.V., Dalziel, M., Hu, Y.P., Soloway, P.D., Wuensch, S.A., Matta, K.L., Lau, J.T.: Biologic contribution of P1 promoter-mediated expression of ST6Gal I sialyltransferase. Glycobiology. 13(8), 591–600 (2003). https://doi.org/10.1093/glycob/cwg066

    Article  CAS  PubMed  Google Scholar 

  31. Jones, M.B., Nasirikenari, M., Feng, L., Migliore, M.T., Choi, K.S., Kazim, L., Lau, J.T.: Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J. Biol. Chem. 285(32), 25009–25017 (2010). https://doi.org/10.1074/jbc.M110.104406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones, M.B.: A role for extra-medullar, extrinsically produced ST6Gal-1 in hematopoiesis and inflammation. State University of New York at Buffalo (2012)

  33. Moore, A.R., Allden, S., Bourne, T., Denis, M.C., Kranidioti, K., Okoye, R., Sotsios, Y., Stencel, Z., Vugler, A., Watt, G., Shaw, S.: Collagen II antibody-induced arthritis in Tg1278TNFko mice: optimization of a novel model to assess treatments targeting human TNFalpha in rheumatoid arthritis. J. Transl. Med. 12, 285 (2014). https://doi.org/10.1186/s12967-014-0285-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raemdonck, K., Baker, K., Dale, N., Dubuis, E., Shala, F., Belvisi, M.G., Birrell, M.A.: CD4(+) and CD8(+) T cells play a central role in a HDM driven model of allergic asthma. Respir. Res. 17, 45 (2016). https://doi.org/10.1186/s12931-016-0359-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendel, I., Kerlero de Rosbo, N., Ben-Nun, A.: A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 25(7), 1951–1959 (1995). https://doi.org/10.1002/eji.1830250723

    Article  CAS  PubMed  Google Scholar 

  36. Jones, M.B., Oswald, D.M., Joshi, S., Whiteheart, S.W., Orlando, R., Cobb, B.A.: B-cell-independent sialylation of IgG. Proc. Natl. Acad. Sci. U. S. A. 113(26), 7207–7212 (2016). https://doi.org/10.1073/pnas.1523968113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vertino-Bell, A., Ren, J., Black, J.D., Lau, J.T.: Developmental regulation of beta-galactoside alpha 2,6-sialyltransferase in small intestine epithelium. Dev. Biol. 165(1), 126–136 (1994). https://doi.org/10.1006/dbio.1994.1240

    Article  CAS  PubMed  Google Scholar 

  38. Nasirikenari, M., Segal, B.H., Ostberg, J.R., Urbasic, A., Lau, J.T.: Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I. Blood. 108(10), 3397–3405 (2006). https://doi.org/10.1182/blood-2006-04-014779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasirikenari, M., Chandrasekaran, E.V., Matta, K.L., Segal, B.H., Bogner, P.N., Lugade, A.A., Thanavala, Y., Lee, J.J., Lau, J.T.: Altered eosinophil profile in mice with ST6Gal-1 deficiency: an additional role for ST6Gal-1 generated by the P1 promoter in regulating allergic inflammation. J. Leukoc. Biol. 87(3), 457–466 (2010). https://doi.org/10.1189/jlb.1108704

    Article  CAS  PubMed  Google Scholar 

  40. Irons, E.E., Lee-Sundlov, M.M., Zhu, Y., Neelamegham, S., Hoffmeister, K.M., Lau, J.T.: B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. Elife 8 (2019). doi:https://doi.org/10.7554/eLife.47328

  41. Wang, Y.C., Stein, J.W., Lynch, C.L., Tran, H.T., Lee, C.Y., Coleman, R., Hatch, A., Antontsev, V.G., Chy, H.S., O'Brien, C.M., Murthy, S.K., Laslett, A.L., Peterson, S.E., Loring, J.F.: Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells. Sci. Rep. 5, 13317 (2015). https://doi.org/10.1038/srep13317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nasirikenari, M., Veillon, L., Collins, C.C., Azadi, P., Lau, J.T.: Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. J. Biol. Chem. 289(10), 7178–7189 (2014). https://doi.org/10.1074/jbc.M113.508457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barkal, A.A., Brewer, R.E., Markovic, M., Kowarsky, M., Barkal, S.A., Zaro, B.W., Krishnan, V., Hatakeyama, J., Dorigo, O., Barkal, L.J., Weissman, I.L.: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 572(7769), 392–396 (2019). https://doi.org/10.1038/s41586-019-1456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laubli, H., Pearce, O.M., Schwarz, F., Siddiqui, S.S., Deng, L., Stanczak, M.A., Deng, L., Verhagen, A., Secrest, P., Lusk, C., Schwartz, A.G., Varki, N.M., Bui, J.D., Varki, A.: Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc. Natl. Acad. Sci. U. S. A. 111(39), 14211–14216 (2014). https://doi.org/10.1073/pnas.1409580111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Z.: Thioglycollate Induced Peritonitis. Bio-protocol. 1(12), e84 (2011). https://doi.org/10.21769/BioProtoc.84

    Article  Google Scholar 

  46. Chassaing, B., Aitken, J.D., Malleshappa, M., Vijay-Kumar, M.: Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 104, 15 25 11–15 25 14 (2014). https://doi.org/10.1002/0471142735.im1525s104

    Article  Google Scholar 

  47. Jones, M.B., Alvarez, C.A., Johnson, J.L., Zhou, J.Y., Morris, N., Cobb, B.A.: CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One. 14(5), e0216893 (2019). https://doi.org/10.1371/journal.pone.0216893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khachigian, L.M.: Collagen antibody-induced arthritis. Nat. Protoc. 1(5), 2512–2516 (2006). https://doi.org/10.1038/nprot.2006.393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to Carlos Alvarez for valuable scientific discussions and feedback, Jill M. Cavanaugh for technical assistance in the maintenance of the mouse colony, and Lori S.C. Kreisman for general laboratory support. Moreover, we thank Alex Huang, MD, PhD for equipment for histological imaging, and the Cytometry & Microscopy Shared Resource of the Case Comprehensive Cancer Center for equipment and assistance with flow cytometry-based experiments. This work was made possible by grants from The National Institutes of Health (R01-GM115234) to BAC, the National Institutes of Health (T32-AI089474) to DMO and JYZ, and the National Institutes of Health (P30CA043703) to the Case CCC.

Author information

Authors and Affiliations

Authors

Contributions

DMO, experimental design, data collection and analysis, manuscript writing, funding; JYZ, experimental design, data collection and analysis; MBJ, experimental design; BAC, experimental design, data analysis, manuscript writing, funding.

Corresponding author

Correspondence to Brian A. Cobb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

No human subjects were used in these studies, but animals (mice) were used. In the Experimental Procedures section, we noted that all animal use was approved by institutional IACUC.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oswald, D.M., Zhou, J.Y., Jones, M.B. et al. Disruption of hepatocyte Sialylation drives a T cell-dependent pro-inflammatory immune tone. Glycoconj J 37, 395–407 (2020). https://doi.org/10.1007/s10719-020-09918-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09918-y

Keywords

Navigation