Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Psoralen: A Biologically Important Coumarin with Emerging Applications

Author(s): Abhinay Thakur, Rohit Sharma, Vivek Sheel Jaswal, Eugenie Nepovimova, Ashun Chaudhary* and Kamil Kuca*

Volume 20, Issue 18, 2020

Page: [1838 - 1845] Pages: 8

DOI: 10.2174/1389557520666200429101053

Price: $65

Abstract

Coumarin belongs to a class of lactones that are fundamentally comprised of a benzene ring fused to an α-pyrone ring; these lactones are known as benzopyrones. Similarly, coumarin has a conjugated electron-rich framework and good charge-transport properties. Plants produce coumarin as a chemical response to protect themselves from predation. Coumarins are used in different products, such as cosmetics, additives, perfumes, aroma enhancers in various tobaccos and some alcoholic drinks, and they play a relevant role in natural products and in organic and medicinal chemistry. In addition, as candidate drugs, many coumarin compounds have strong pharmacological activity, low toxicity, high bioavailability and better curative effects and have been used to treat various types of diseases. Various endeavors were made to create coumarin-based anticoagulant, antimicrobial, antioxidant, anticancer, antidiabetic, antineurodegenerative, analgesic and anti-inflammatory agents. A class of chemical compounds called furocoumarins has phototoxic properties and is naturally synthesized via the fusion of coumarin to a furan ring in different plant species. Psoralens belong to the furocoumarin class and occur naturally in various plants, e.g., lemons, limes, and parsnips. Angelicin is an isomer of psoralens, and most furocoumarins, e.g., xanthotoxin, bergapten, and nodekenetin, are derivatives of psoralens or angelicin. The present work demonstrated that psoralen molecules exhibit anti-tumoral activity against breast cancer and influence different intracellular signals to maintain the high survival of breast cancer cells. Psoralens perform different functions, e.g., antagonize metabolic pathways, protease enzymes, and cell cycle progression and even interfere in the crosslinking between receptors and growth factor mitogenic signaling.

Keywords: Psoralens, antidiabetic, anti-inflammatory agents, breast cancer, furocoumarins, DNA.

Graphical Abstract
[1]
Alsenaid, A.; Alamri, A.; Prinz, J.C.; Ruzicka, T.; Wolf, R. Lichen planus of the lower limbs: Successful treatment with psoralen cream plus ultraviolet A photochemotherapy. Dermatol. Ther. (Heidelb.), 2016, 29(2), 109-113.
[http://dx.doi.org/10.1111/dth.12321] [PMID: 26626735]
[2]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res., 2013, 22(7), 3049-3060.
[http://dx.doi.org/10.1007/s00044-012-0321-6]
[3]
Beier, R.C.; Oertli, E.H. Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry, 1983, 22, 2595-2597.
[http://dx.doi.org/10.1016/0031-9422(83)80173-3]
[4]
Bendre, M.S.; Montague, D.C.; Peery, T.; Akel, N.S.; Gaddy, D.; Suva, L.J. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 2003, 33(1), 28-37.
[http://dx.doi.org/10.1016/S8756-3282(03)00086-3] [PMID: 12919697]
[5]
Berdegue, M.; Kristina, K.W.; John, T. Trumble Feeding Deterrence of Spodoptera exigua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocownarins. Environ. Entomol., 1997, 26(4), 912-919.
[http://dx.doi.org/10.1093/ee/26.4.912]
[6]
Berenbau, M. Evolution of specialization in insect-umbellifer associations. Annu. Rev. Entomol., 1990, 35, 319-343.
[http://dx.doi.org/10.1146/annurev.en.35.010190.001535]
[7]
Berenbaum, M.R.; Nitao, J.K.; Zangerl, A.R. Adaptive significance of furanocoumarin diversity in Pastinaca sativa (Apiaceae). J. Chem. Ecol., 1991, 17(1), 207-215.
[http://dx.doi.org/10.1007/BF00994434] [PMID: 24258446]
[8]
Bernardi, P.; Krauskopf, A.; Basso, E.; Petronilli, V.; Blachly-Dyson, E.; Di Lisa, F.; Forte, M.A. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J., 2006, 273(10), 2077-2099.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05213.x] [PMID: 16649987]
[9]
Bernays, E.A.; Weiss, M.R. Induced food preferences in caterpillars-the need to identify mechanisms. Entomol. Exp. Appl., 1996, 78, 1-8.
[http://dx.doi.org/10.1111/j.1570-7458.1996.tb00759.x]
[10]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[11]
Borgues, F.; Roleira, F.; Milhazes, N.; Uriarte, E.; Santana, L. Simple coumarins: Privileged scaffolds in medicinal chemistry. Front Med. Chem. Biol. Inter., 2009, 4, 23-85.
[12]
Bubols, G.B. Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[PMID: 22876957]
[13]
Caffieri, S.; Di Lisa, F.; Bolesani, F.; Facco, M.; Semenzato, G.; Dall’Acqua, F.; Canton, M. The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as a crucial mechanism in PUVA therapy. Blood, 2007, 109(11), 4988-4994.
[http://dx.doi.org/10.1182/blood-2006-08-037192] [PMID: 17311998]
[14]
Canton, M.; Caffieri, S.; Dall’Acqua, F.; Di Lisa, F. PUVAinduced apoptosis involves mitochondrial dysfunction caused by the opening of the permeability transition pore FEBS Lett., 2002, 522(1-3), 168-172.
[http://dx.doi.org/10.1016/S0014-5793(02)02926-5] [PMID: 12095639]
[15]
Carter, D. New global survey shows an increasing cancer burden. Am. J. Nurs., 2014, 114(3), 17.
[http://dx.doi.org/10.1097/01.NAJ.0000444482.41467.3a] [PMID: 24572524]
[16]
Chen, W.Q.; Zeng, H.M.; Zheng, R.S.; Zhang, S.W.; He, J. Cancer incidence and mortality in china, 2007. Chin. J. Cancer Res., 2012, 24(1), 1-8.
[http://dx.doi.org/10.1007/s11670-012-0001-6] [PMID: 23359628]
[17]
Chen, C.; Yu, Q.; Wei, X.; Cancalon, P.F.; Gmitter, F.G., Jr Identification of genes associated with low furanocoumarin content in grapefruit. Genome, 2014, 57(10), 537-545.
[http://dx.doi.org/10.1139/gen-2014-0164] [PMID: 25756876]
[18]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: Review Fitoterapia, 2013, 90, 44-56.
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[19]
Chopra, R.N.; Chopra, I.C. Indigenous drugs of India, 2nd ed; Kolkata, 1958.
[20]
Coleman, R.E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev., 2001, 27(3), 165-176.
[http://dx.doi.org/10.1053/ctrv.2000.0210] [PMID: 11417967]
[21]
Cui, Y.; Taniguchi, S.; Kuroda, T.; Hatano, T. Constituents of Psoralea corylifolia fruits and their effects on methicillin-resistant Staphylococcus aureus. Molecules, 2015, 20(7), 12500-12511.
[http://dx.doi.org/10.3390/molecules200712500] [PMID: 26184136]
[22]
Danno, K.; Horio, T.; Ozaki, M.; Imamura, S. Topical 8-methoxypsoralen photochemotherapy of psoriasis: A clinical study. Br. J. Dermatol., 1983, 108(5), 519-524.
[http://dx.doi.org/10.1111/j.1365-2133.1983.tb01051.x] [PMID: 6342648]
[23]
Deavall, D.G.; Martin, E.A.; Horner, J.M.; Roberts, R. Drug-induced oxidative stress and toxicity. J. Toxicol., 2012, 2012645460
[http://dx.doi.org/10.1155/2012/645460] [PMID: 22919381]
[24]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[25]
Diawara, M.M.; Trumble, J.T.; Quiros, C.F. Linear furanocoumarins of three celery breeding lines: Implications for integrated pest management. J. Agric. Food Chem., 1993, 1993(41), 819.
[http://dx.doi.org/10.1021/jf00029a027]
[26]
Diawara, M.M.; Trumble, J.T.; White, K.K.; Carson, W.G.; Martinez, L.A. Toxicity of linear furanocoumarins toSpodoptera exigua: Evidence for antagonistic interactions. J. Chem. Ecol., 1993, 19(11), 2473-2484.
[http://dx.doi.org/10.1007/BF00980684] [PMID: 24248704]
[27]
Dolan, L.C.; Matulka, R.A.; Burdock, G.A. Naturally occurring food toxins. Toxins (Basel), 2010, 2(9), 2289-2332.
[http://dx.doi.org/10.3390/toxins2092289] [PMID: 22069686]
[28]
Don, R. Relationships between energy metabolism and development of early mammalian embryos. Theriogenology, 1992, 37, 75-93.
[http://dx.doi.org/10.1016/0093-691X(92)90248-P]
[29]
Dugrand-Judek, A.; Olry, A.; Hehn, A.; Costantino, G.; Ollitrault, P.; Froelicher, Y.; Bourgaud, F. The distribution of coumarins and furanocoumarins in citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One, 2015, 10(11)e0142757
[http://dx.doi.org/10.1371/journal.pone.0142757] [PMID: 26558757]
[30]
Eisenbrand, G. Toxicological assessment of furocoumarins in foodstuffs. Mol. Nutr. Food Res., 2007, 51(3), 367-373.
[http://dx.doi.org/10.1002/mnfr.200600270] [PMID: 17340579]
[31]
Fais, A.; Corda, M.; Era, B.; Fadda, M.B.; Matos, M.J.; Quezada, E.; Santana, L.; Picciau, C.; Podda, G.; Delogu, G. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules, 2009, 14(7), 2514-2520.
[http://dx.doi.org/10.3390/molecules14072514] [PMID: 19633620]
[32]
Fracarolli, L.; Rodrigues, G.B.; Pereira, A.C.; Massola Júnior, N.S.; Silva-Junior, G.J.; Bachmann, L.; Wainwright, M.; Bastos, J.K.; Braga, G.U.L. nactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation. J. Photochem. Photobiol. B, 2016, 162, 402-411.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.009] [PMID: 27434699]
[33]
Gardner, D.K.; Pool, T.B.; Lane, M. Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin. Reprod. Med., 2000, 18(2), 205-218.
[http://dx.doi.org/10.1055/s-2000-12559] [PMID: 11256170]
[34]
Guo, B.F.; Liu, S.; Ye, Y.Y.; Han, X.H. Inhibitory effects of osthole, psoralen and aconitine on invasive activities of breast cancer MDA-MB-231BO cell line and the mechanisms. J. Chin. Integr. Med., 2011, 9(10), 1110-1117.
[http://dx.doi.org/10.3736/jcim20111012] [PMID: 22015193]
[35]
Gupta, A.K.; Anderson, T.F. Psoralen photochemotherapy. J. Am. Acad. Dermatol., 1987, 17(5 Pt 1), 703-734.
[http://dx.doi.org/10.1016/S0190-9622(87)70255-2] [PMID: 3316316]
[36]
Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 427-443.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[37]
Hearst, J.E. Psoralen photochemistry. Annu. Rev. Biophys. Bioeng., 1981, 10, 69-86.
[http://dx.doi.org/10.1146/annurev.bb.10.060181.000441] [PMID: 6167200]
[38]
Hearst, J.E. Stud. Biophys., 1983, 94, 25.
[39]
Henseler, T.; Wolff, K.; Hönigsmann, H.; Christophers, E. Oral 8-methoxypsoralen photochemotherapy of psoriasis. The European PUVA study: A cooperative study among 18 European centres. Lancet, 1981, 1(8225), 853-857.
[http://dx.doi.org/10.1016/S0140-6736(81)92137-1] [PMID: 6112291]
[40]
Hodge, J.M.; Kirkland, M.A.; Nicholson, G.C. Multiple roles of M-CSF in human osteoclastogenesis. J. Cell. Biochem., 2007, 102(3), 759-768.
[http://dx.doi.org/10.1002/jcb.21331]
[41]
Hofbauer, L.C.; Neubauer, A.; Heufelder, A.E. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer, 2001, 92(3), 460-470.
[http://dx.doi.org/10.1002/1097-0142(20010801)92:3<460:AID-CNCR1344>3.0.CO;2-D] [PMID: 11505389]
[42]
Huang, L.; Cheng, Y.Y.; Chow, L.T.; Zheng, M.H.; Kumta, S.M. Tumour cells produce receptor activator of NF-kappaB ligand (RANKL) in skeletal metastases. J. Clin. Pathol., 2002, 55(11), 877-878.
[http://dx.doi.org/10.1136/jcp.55.11.877] [PMID: 12401833]
[43]
Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J. Hazard. Mater., 2018, 347, 451-460.
[http://dx.doi.org/10.1016/j.jhazmat.2018.01.016] [PMID: 29353190]
[44]
Ivie, G.; Bull-Don, L.; Beier-Ross, C.; Pryor-Nan, W. Metabolic Detoxification of Linear and Angular Furanocoumarins by Caterpillars of the Black Swallowtail Butterfly. Allelochemicals: Role in Agriculture and Forestry, 1987, 455-462.
[45]
Ivie, G.W.; Bull, D.L.; Beier, R.C.; Pryor, N.W.; Oertli, E.H. Metabolic detoxification: mechanism of insect resistance to plant psoralens. Science, 1983, 221(4608), 374-376.
[http://dx.doi.org/10.1126/science.221.4608.374] [PMID: 17798893]
[46]
Joshi, P.C.; Pathak, M.A. Production of singlet oxygen and superoxide radicals by psoralens and their biological significance. Biochem. Biophys. Res. Commun., 1983, 112(2), 638-646.
[http://dx.doi.org/10.1016/0006-291X(83)91511-5] [PMID: 6303326]
[47]
Klocke, J.A.; Barnby, M.F.M.A.; Yamasaki, R.B. Limonoids, phenolics, and furanocollmarins as insect antifeedants, repellents, and growth inhibitory compounds In: ACS Symposium Series, 387; , 1989; pp. 136-149.
[http://dx.doi.org/10.1021/bk-1989-0387.ch010]
[48]
Kupsco, A.; Schlenk, D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. Int. Rev. Cell Mol. Biol., 2015, 317, 1-66.
[http://dx.doi.org/10.1016/bs.ircmb.2015.02.002] [PMID: 26008783]
[49]
Laskin, J.D. Cellular and molecular mechanisms in photochemical sensitization: Studies on the mechanism of action of psoralens. Food Chem. Toxicol., 1994, 32(2), 119-127.
[http://dx.doi.org/10.1016/0278-6915(94)90172-4] [PMID: 8132171]
[50]
Latha, P.G.; Panikkar, K.R. Antitumour active fraction from Psoralea corylifolia seeds. Fitoterapia, 1998, 69(5), 451-455.
[51]
Lee, S.J.; Nam, K.W.; Mar, W. Effects of psoralen from Psoralea corylifolia on quinone reductase, ornithine decarboxylase, and JB6 cells transformation promotion. Arch. Pharm. Res., 2011, 34(1), 31-36.
[http://dx.doi.org/10.1007/s12272-011-0103-6] [PMID: 21468912]
[52]
Li, J.; Xu, W.; Yuan, X.; Chen, H.; Song, H.; Wang, B.; Han, J. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int. J. Nanomedicine, 2017, 12, 6909-6921.
[http://dx.doi.org/10.2147/IJN.S144184] [PMID: 29075110]
[53]
Li, Q.; Cai, T.; Huang, Y.; Xia, X.; Cole, S.; Cai, Y. A review of the structurepreparation, and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel), 2017, 7, 122.
[http://dx.doi.org/10.3390/nano7060122]
[54]
Li, X.; Yu, C.; Hu, Y.; Xia, X.; Liao, Y.; Zhang, J.; Chen, H.; Lu, W.; Zhou, W.; Song, Z. New Application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects. Front. Cell. Infect. Microbiol., 2018, 8, 178.
[http://dx.doi.org/10.3389/fcimb.2018.00178] [PMID: 29922598]
[55]
Li, Y.; Wu, H.; Yang, X.; Jia, M.; Li, Y.; Huang, Y.; Lin, J.; Wu, S.; Hou, Z. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol. Pharm., 2014, 11(8), 2915-2927.
[http://dx.doi.org/10.1021/mp500254j] [PMID: 24984984]
[56]
Lim, H.W.; Silpa-archa, N.; Amadi, U.; Menter, A.; Van Voorhees, A.S.; Lebwohl, M. Phototherapy in dermatology: A call for action. J. Am. Acad. Dermatol., 2015, 72(6), 1078-1080.
[http://dx.doi.org/10.1016/j.jaad.2015.03.017] [PMID: 25981004]
[57]
Lipton, A.; Uzzo, R.; Amato, R.J.; Ellis, G.K.; Hakimian, B.; Roodman, G.D.; Smith, M.R. The science and practice of bone health in oncology: Managing bone loss and metastasis in patients with solid tumors. J. Natl. Compr. Canc. Netw., 2009, 7(Suppl. 7), S1-S29.
[http://dx.doi.org/10.6004/jnccn.2009.0080] [PMID: 19878635]
[58]
Liu, Y.; Zhang, Y.; Wang, L.; Guo, Y.; Xiao, S. Prevalence of Porphyromonas gingivalis four rag locus genotypes in patients of orthodontic gingivitis and periodontitis. PLoS One, 2013, 8(4)e61028
[http://dx.doi.org/10.1371/journal.pone.0061028] [PMID: 23593379]
[59]
Logani, M.K.; Austin, W.A.; Shah, B.; Davies, R.E. Photooxidation of 8-MOP with singlet oxygen. Photochem. Photobiol., 1982, 35, 569-573.
[http://dx.doi.org/10.1111/j.1751-1097.1982.tb02611.x]
[60]
Lundquist, G.; Forsgren, H.; Gajecki, M.; Emtestam, L. Photochemotherapy of oral lichen planus. A controlled study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1995, 79(5), 554-558.
[http://dx.doi.org/10.1016/S1079-2104(05)80094-0] [PMID: 7600216]
[61]
Manderfeld, M.M.; Schafer, H.W.; Davidson, P.M.; Zottola, E.A. Isolation and identification of antimicrobial furocoumarins from parsley. J. Food Prot., 1997, 60(1), 72-77.
[http://dx.doi.org/10.4315/0362-028X-60.1.72] [PMID: 10465045]
[62]
Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Fuentes-Edfuf, C.; Santos, Y.; Muñoz-Crego, A. Looking for new targets: Simple coumarins as antibacterial agents. Med. Chem., 2012, 8(6), 1140-1145.
[PMID: 22779756]
[63]
Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Fuentes-Edfuf, C.; Santos, Y.; Muñoz-Crego, A. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents. Molecules, 2013, 18(2), 1394-1404.
[http://dx.doi.org/10.3390/molecules18021394] [PMID: 23348993]
[64]
Melski, J.W.; Tanenbaum, L.; Parrish, J.A.; Fitzpatrick, T.B.; Bleich, H.L. Oral methoxsalen photochemotherapy for the treatment of psoriasis: A cooperative clinical trial. J. Invest. Dermatol., 1977, 68(6), 328-335.
[http://dx.doi.org/10.1111/1523-1747.ep12496022] [PMID: 864273]
[65]
Ming, L.; Ge, B.; Chen, K.; Ma, H.; Zhai, Y. Effects of isopsoralen on bone marrow stromal stem cells differentiate and proliferate in vitro. Zhongguo Zhongyao Zazhi, 2011, 36(15), 2124-2128.
[PMID: 22066454]
[66]
Monga Paramjeet, K.; Sharma, D.; Dubey, A. Comparative study of microwave and conventional synthesis and pharmacological activity of coumarins. J. Chem. Pharm. Res., 2012, 4(1), 822-850.
[67]
Mouli, P.C.; Selvakumar, T.; Kumar, S.M.; Parthiban, S.; Priya, R.; Deivanayagi, M. Photochemotherapy: A review. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3, 229-235.
[http://dx.doi.org/10.4103/2231-0738.114840]
[68]
Muckensturm, B.; Duplay, D.; Robert, P.C. Simon/S, M.T.; Kienlen, J.C. Substances antiappetantes pour insects phytophages presentes dans Angelica silvestris et Heracleum sphondylium. Biochem. Syst. Ecol., 1981, 9, 289-292.
[http://dx.doi.org/10.1016/0305-1978(81)90010-7]
[69]
Murray, R.D.H. Naturally occurring plant coumarins. Prog. Chem. Org. Nat. Prod., 1997, 72, 1-119.
[70]
Murray, R.D.H.; Mendez, J.; Brown, S.A. The natural coumarins occurrence.Chemistry and Biochemistry; John Wiley and Sons: Chichester, UK, 1982.
[71]
Nishimura, Y.; Inoue, A.; Sasagawa, S.; Koiwa, J.; Kawaguchi, K.; Kawase, R.; Maruyama, T.; Kim, S.; Tanaka, T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit. Anom. (Kyoto), 2016, 56(1), 18-27.
[http://dx.doi.org/10.1111/cga.12142] [PMID: 26537640]
[72]
Nitao, J.K. Metabolism and excretion of the furanocoumarin xanthotoxin by parsnip webworm,Depressaria pastinacella. J. Chem. Ecol., 1990, 16(2), 417-428.
[http://dx.doi.org/10.1007/BF01021774] [PMID: 24263499]
[73]
Oldham, M.; Yoon, P.; Fathi, Z.; Beyer, W.F.; Adamson, J.; Liu, L.; Alcorta, D.; Xia, W.; Osada, T.; Liu, C.; Yang, X.Y.; Dodd, R.D.; Herndon, J.E., II; Meng, B.; Kirsch, D.G.; Lyerly, H.K.; Dewhirst, M.W.; Fecci, P.; Walder, H.; Spector, N.L. X-Ray Psoralen Activated Cancer Therapy (X-PACT). PLoS One, 2016, 11(9)e0162078
[http://dx.doi.org/10.1371/journal.pone.0162078] [PMID: 27583569]
[74]
Oliveira, A.M.; Raposo, M.M.; Oliveira-Campos, A.M.; Machado, A.E.; Puapairoj, P.; Pedro, M.; Nascimento, M.S.; Portela, C.; Afonso, C.; Pinto, M. Psoralen analogues: Synthesis, inhibitory activity of growth of human tumor cell lines and computational studies. Eur. J. Med. Chem., 2006, 41(3), 367-372.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.016] [PMID: 16439037]
[75]
Pandita, D.; Kumar, S.; Lather, V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives. Drug Discov. Today, 2015, 20(1), 95-104.
[http://dx.doi.org/10.1016/j.drudis.2014.09.018] [PMID: 25277320]
[76]
Panno, M.L.; Giordano, F.; Mastroianni, F.; Palma, M.G.; Bartella, V.; Carpino, A.; Aquila, S.; Andò, S. Breast cancer cell survival signal is affected by bergapten combined with an ultraviolet irradiation. FEBS Lett., 2010, 584(11), 2321-2326.
[http://dx.doi.org/10.1016/j.febslet.2010.04.001] [PMID: 20371365]
[77]
Parrish, J.A.; Fitzpatrick, T.B.; Tanenbaum, L.; Pathak, M.A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med., 1974, 291(23), 1207-1211.
[http://dx.doi.org/10.1056/NEJM197412052912301] [PMID: 4422691]
[78]
Pathak, M.A. Mechanisms of psoralen photosensitization reactions. Natl. Cancer Inst. Monogr., 1984, 66, 41-46.
[PMID: 6531038]
[79]
Pereira, C.V.; Nadanaciva, S.; Oliveira, P.J.; Will, Y. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin. Drug Metab. Toxicol., 2012, 8(2), 219-237.
[http://dx.doi.org/10.1517/17425255.2012.645536] [PMID: 22248238]
[80]
Potapenko, A.Ya. Mechanisms of photodynamic effects of furocoumarins. J. Photochem. Photobiol. B, 1991, 9(1), 1-33.
[PMID: 1907640]
[81]
Powell, G.J.; Southby, J.; Danks, J.A.; Stillwell, R.G.; Hayman, J.A.; Henderson, M.A.; Bennett, R.C.; Martin, T.J. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res., 1991, 51(11), 3059-3061.
[PMID: 2032246]
[82]
Qian, L.; Cui, F.; Yang, Y.; Liu, Y.; Qi, S.; Wang, C. Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Sci. Total Environ., 2018, 634, 478-487.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.012] [PMID: 29631138]
[83]
Sarvaiya, V.; Sadariya, K.; Rana, M.P.; Thaker, A.M. Zebrafish as model organism for drug discovery and toxicity testing: A review. Vet. Clin. Sci, 2014, 3, 31-38.
[84]
Scaffidi, J.P.; Gregas, M.K.; Lauly, B.; Zhang, Y.; Vo-Dinh, T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 2011, 5(6), 4679-4687.
[http://dx.doi.org/10.1021/nn200511m] [PMID: 21553850]
[85]
Srinivas, C.R.; Shenoi, S.D.; Pai, S. Psoralens. Indian J. Dermatol. Venereol. Leprol., 1997, 63(5), 276-287.
[PMID: 20944357]
[86]
Statdler, E.; Buser, H.R. Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect. Experientia, 1984, 40, 1157-1159.
[http://dx.doi.org/10.1007/BF01971471]
[87]
Tang, D.Z.; Yang, F.; Yang, Z.; Huang, J.; Shi, Q.; Chen, D.; Wang, Y.J. Psoralen stimulates osteoblast differentiation through activation of BMP signaling. Biochem. Biophys. Res. Commun., 2011, 405(2), 256-261.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.021] [PMID: 21219873]
[88]
Trumble, J.T.; Dercks, W.; Quiros, C.F.; Beier, R.C. Host plant resistance and linear furanocoumarin content of Apium accessions. J. Econ. Entomol., 1990, 83(2), 519-525.
[http://dx.doi.org/10.1093/jee/83.2.519] [PMID: 2345223]
[89]
van Dartel, D.A.; Schulpen, S.H.; Theunissen, P.T.; Bunschoten, A.; Piersma, A.H.; Keijer, J. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification. Toxicology, 2014, 324, 76-87.
[http://dx.doi.org/10.1016/j.tox.2014.07.009] [PMID: 25089837]
[90]
Wakabayashi, H.; Kondo, I.; Kobayashi, T.; Yamauchi, K.; Toida, T.; Iwatsuki, K.; Yoshie, H. Periodontitis, periodontopathic bacteria and lactoferrin. Biometals, 2010, 23(3), 419-424.
[http://dx.doi.org/10.1007/s10534-010-9304-6] [PMID: 20155438]
[91]
Wang, H.; Lu, X.; Yao, H.; Feng, J.; Liu, R. Research progress on application of coumarin and its derivatives. Chemical Industry Times, 2009, 23(8), 40-43.
[92]
Wang, X.; Xu, C.; Hua, Y.; Cheng, K.; Zhang, Y.; Liu, J.; Han, Y.; Liu, S.; Zhang, G.; Xu, S.; Yang, Z. Psoralen induced cell cycle arrest by modulating Wnt/β-catenin pathway in breast cancer cells. Sci. Rep., 2018, 8(1), 14001.
[http://dx.doi.org/10.1038/s41598-018-32438-7] [PMID: 30228287]
[93]
Wang, Y.; Hong, C.; Zhou, C.; Xu, D.; Qu, H.B. Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds. Evid. Based Complement. Alternat. Med., 2011, 2011363052
[http://dx.doi.org/10.1093/ecam/nen087] [PMID: 19131395]
[94]
Wangchuk, P.; Pyne, S.G.; Keller, P.A.; Taweechotipatr, M.; Kamchonwongpaisane, S. Phenylpropanoids and furanocoumarins as antibacterial and antimalarial constituents of the Bhutanese medicinal plant Pleurospermum amabile. Nat. Prod. Commun., 2014, 9(7), 957-960.
[http://dx.doi.org/10.1177/1934578X1400900719] [PMID: 25230503]
[95]
Wolff, K. Side-effects of psoralen photochemotherapy (PUVA). Br. J. Dermatol., 1990, 122(Suppl. 36), 117-125.
[http://dx.doi.org/10.1111/j.1365-2133.1990.tb02889.x] [PMID: 2196078]
[96]
Wong, R.W.; Rabie, A.B. Effect of psoralen on bone formation. J. Orthop. Res., 2011, 29(2), 158-164.
[http://dx.doi.org/10.1002/jor.21124] [PMID: 20196083]
[97]
Wu, C.; Sun, Z.; Ye, Y.; Han, X.; Song, X.; Liu, S. Psoralen inhibits bone metastasis of breast cancer in mice. Fitoterapia, 2013, 91, 205-210.
[http://dx.doi.org/10.1016/j.fitote.2013.09.005] [PMID: 24060909]
[98]
Wu, X.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv., 2016, 13(5), 609-612.
[http://dx.doi.org/10.1517/17425247.2016.1165662] [PMID: 26978527]
[99]
Xia, L.; Wang, Y.; Huang, W.; Qian, H. Research advance of anticancer drugs with coumarin structures. Zhongguo Xin Yao Zazhi, 2013, 22(20), 2392-2404.
[100]
Xia, Q.; Wei, L.; Zhang, Y.; Kong, H.; Shi, Y.; Wang, X.; Chen, X.; Han, L.; Liu, K. Psoralen induces developmental toxicity in zebrafish embryos/larvae through oxidative stress, apoptosis, and energy metabolism disorder. Front. Pharmacol., 2018, 9, 1457.
[http://dx.doi.org/10.3389/fphar.2018.01457] [PMID: 30618751]
[101]
Xu, K.; Pan, X.; Sun, Y.; Xu, W.; Njunge, L.; Yang, L. Psoralen activates cartilaginous cellular functions of rat chondrocytes in vitro. Pharm. Biol., 2015, 53(7), 1010-1015.
[http://dx.doi.org/10.3109/13880209.2014.952835] [PMID: 25471084]
[102]
Yajima, T.; Munakata, K. Phloroglucinoltype furanocoumarins, a group of potent naturally-occurring insect antifeedants. Agric. BioI. Chern, 1979, 43, 1701-1706.
[103]
Yang, Z.; Huang, J.H.; Liu, S.F.; Zhao, Y.J.; Shen, Z.Y.; Wang, Y.J.; Bian, Q. The osteoprotective effect of psoralen in ovariectomy-induced osteoporotic rats via stimulating the osteoblastic differentiation from bone mesenchymal stem cells. Menopause, 2012, 19(10), 1156-1164.
[PMID: 22781784]
[104]
Yang, Z.; Tang, W.; Luo, X.; Zhang, X.; Zhang, C.; Li, H.; Gao, D.; Luo, H.; Jiang, Q.; Liu, J. Dual-ligand modified polymer-lipid hybrid nanoparticles for docetaxel targeting delivery to Her2/neu overexpressed human breast cancer cells. J. Biomed. Nanotechnol., 2015, 11(8), 1401-1417.
[http://dx.doi.org/10.1166/jbn.2015.2086] [PMID: 26295141]
[105]
Yin, S.; Fan, C.Q.; Wang, Y.; Dong, L.; Yue, J.M. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study. Bioorg. Med. Chem., 2004, 12(16), 4387-4392.
[http://dx.doi.org/10.1016/j.bmc.2004.06.014] [PMID: 15265490]
[106]
Yoo, E.K.; Rook, A.H.; Elenitsas, R.; Gasparro, F.P.; Vowels, B.R. Apoptosis induction of ultraviolet light A and photochemotherapy in cutaneous T-cell Lymphoma: Relevance to mechanism of therapeutic action. J. Invest. Dermatol., 1996, 107(2), 235-242.
[http://dx.doi.org/10.1111/1523-1747.ep12329711] [PMID: 8757769]
[107]
Yuan, X.; Bi, Y.; Yan, Z.; Pu, W.; Li, Y.; Zhou, K. Psoralen and isopsoralen ameliorate sex hormone deficiency-induced osteoporosis in female and male mice. BioMed Res. Int., 2016, 20166869452
[http://dx.doi.org/10.1155/2016/6869452] [PMID: 27239473]
[108]
Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine, 2015, 10, 2101-2114.
[PMID: 25844039]
[109]
Zhang, R.X.; Cai, P.; Zhang, T.; Chen, K.; Li, J.; Cheng, J.; Pang, K.S.; Adissu, H.A.; Rauth, A.M.; Wu, X.Y. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine (Lond.), 2016, 12(5), 1279-1290.
[http://dx.doi.org/10.1016/j.nano.2015.12.383] [PMID: 26772427]
[110]
Zhou, W.; Zhang, X.; Zhu, C.L.; He, Z.Y.; Liang, J.P.; Song, Z.C. Melatonin receptor agonists as the “perioceutics” agents for periodontal disease through modulation of Porphyromonas gingivalis virulence and inflammatory response. PLoS One, 2016, 11e0166442
[http://dx.doi.org/10.1371/journal. pone.0166442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy