Skip to main content

Advertisement

Log in

Identification and Design of a Next-Generation Multi Epitopes Bases Peptide Vaccine Candidate Against Prostate Cancer: An In Silico Approach

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is the second most diagnosed cancer in men and ranked fifth in overall cancer diagnosis. During the past decades, it has arisen as a significant life-threatening disease in men at an older age. At the early onset of illness when it is in localized form, radiation and surgical treatments are applied against this disease. In case of adverse situations androgen deprivation therapy, chemotherapy, hormonal therapy, etc. are widely used as a therapeutic element. However, studies found the occurrences of several side effects after applying these therapies. In current work, several immunoinformatic techniques were applied to formulate a multi-epitopic vaccine from the overexpressed antigenic proteins of PCa. A total of 13 epitopes were identified from the five prostatic antigenic proteins (PSA, PSMA, PSCA, STEAP, and PAP), after validation with several in silico tools. These epitopes were fused to form a vaccine element by (GGGGS)3 peptide linker. Afterward, 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) was used as an adjuvant to initiate and induce STING-mediated cytotoxic cascade. In addition, molecular docking was performed between the vaccine element and HLA class I antigen with the low ACE value of −251 kcal/mol which showed a significant binding. Molecular simulation using normal mode analysis (NMA) illustrated the docking complex as a stable one. Therefore, this observation strongly indicated that our multi epitopes bases peptide vaccine molecule will be an effective candidate for the treatment of the PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perera, M., Papa, N., Christidis, D., Wetherell, D., Hofman, M. S., & Murphy, D. G., et al. (2016). Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. European Urology, 70(6), 926–937.

    PubMed  Google Scholar 

  2. Perera, M., Papa, N., Roberts, M., Williams, M., Udovicich, C., & Vela, I. et al. (2019). Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. European Urology, 77(4), 403–417.

    PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34.

    Google Scholar 

  4. Bashir, M. N.(2015). Epidemiology of prostate cancer. Asian Pacific Journal of Cancer Prevention, 16(13), 5137–5141.

    PubMed  Google Scholar 

  5. Walsh, P. C., DeWeese, T. L., & Eisenberger, M. A. (2007). Localized prostate cancer. New England Journal of Medicine, 357(26), 2696–2705.

    CAS  PubMed  Google Scholar 

  6. Comiskey, M. C., Dallos, M. C., & Drake, C. G. (2018). Immunotherapy in prostate cancer: teaching an old dog new tricks. Current Oncology Reports, 20(9), 75.

    PubMed  Google Scholar 

  7. Nguyen, P. L., Alibhai, S. M., Basaria, S., D’Amico, A. V., Kantoff, P. W., & Keating, N. L., et al. (2015). Adverse effects of androgen deprivation therapy and strategies to mitigate them. European Urology, 67(5), 825–836.

    CAS  PubMed  Google Scholar 

  8. Ceder, Y., Bjartell, A., Culig, Z., Rubin, M. A., Tomlins, S., & Visakorpi, T. (2016). The molecular evolution of castration-resistant prostate cancer. European Urology Focus, 2(5), 506–513.

    PubMed  Google Scholar 

  9. Sumanasuriya, S., & De Bono, J. (2018). Treatment of advanced prostate cancer—a review of current therapies and future promise. Cold Spring Harbor Perspectives In Medicine, 8(6), a030635.

    PubMed  PubMed Central  Google Scholar 

  10. Cheever, M. A., & Higano, C. S. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research, 17(11), 3520–3526.

    PubMed  Google Scholar 

  11. Pardoll, D. M. (1998). Cancer vaccines. Nature Medicine, 4(5), 525.

    CAS  PubMed  Google Scholar 

  12. Finn, O. J. (2003). Cancer vaccines: between the idea and the reality. Nature Reviews Immunology, 3(8), 630.

    CAS  PubMed  Google Scholar 

  13. Doytchinova, I. A., & Flower, D. R. (2018). In silico prediction of cancer immunogens: current state of the art. BMC Immunology, 19(1), 11.

    PubMed  PubMed Central  Google Scholar 

  14. Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232.

    PubMed  PubMed Central  Google Scholar 

  15. Stamey, T. A., Yang, N., Hay, A. R., McNeal, J. E., Freiha, F. S., & Redwine, E. (1987). Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. New England Journal of Medicine, 317(15), 909–916.

    CAS  PubMed  Google Scholar 

  16. Chang, S. S., Reuter, V. E., Heston, W., Bander, N. H., Grauer, L. S., & Gaudin, P. B. (1999). Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Research, 59(13), 3192–3198.

    CAS  PubMed  Google Scholar 

  17. Reiter, R. E., Gu Z, Watabe, T, Thomas, G, Szigeti, K, Davis, E, et al. (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proceedings of the National Academy of Sciences USA, 95(4), 1735–1740.

  18. de la Luz Garcia-Hernandez, M., Gray, A., Hubby, B., & Kast, W. M. (2007). In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Research., 67(3), 1344–1351.

    Google Scholar 

  19. Rini, B. I., Weinberg, V., Fong, L., Conry, S., Hershberg, R. M., & Small, E. J. (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen‐presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer, 107(1), 67–74.

    CAS  PubMed  Google Scholar 

  20. Dannull, J., Diener, P.-A., Prikler, L., Fürstenberger, G., Cerny, T., & Schmid, U., et al. (2000). Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Research., 60(19), 5522–5528.

    CAS  PubMed  Google Scholar 

  21. Matera, L. (2010). The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treatment Reviews, 36(2), 131–141.

    CAS  PubMed  Google Scholar 

  22. Barh, D., Misra, A. N., Kumar, A., & Vasco, A. (2010). A novel strategy of epitope design in Neisseria gonorrhoeae. Bioinformation, 5(2), 77.

    PubMed  PubMed Central  Google Scholar 

  23. Su, C. T., Schönbach, C., & Kwoh, C.-K. (2013). Molecular docking analysis of 2009-H1N1 and 2004-H5N1 influenza virus HLA-B* 4405-restricted HA epitope candidates: implications for TCR cross-recognition and vaccine development. BMC Bioinformatics, 14, 1–7.

    Google Scholar 

  24. Consortium, U. (2018). UniProt: the universal protein knowledgebase. Nucleic Acids Research, 46(5), 2699.

    Google Scholar 

  25. Coordinators, N. R. (2018). Database resources of the national center for biotechnology information. Nucleic Acids Research, 46(Database issue), D8.

    Google Scholar 

  26. Potocnakova, L., Bhide, M., & Pulzova, L. B. (2016). An introduction to B-cell epitope mapping and in silico epitope prediction. Journal of Immunology Research, 6760830, 1–11.

    Google Scholar 

  27. Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., & Cantrell, J. R., et al. (2018). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343.

    PubMed Central  Google Scholar 

  28. El-Manzalawy, Y., Dobbs, D., Honavar, V. (2008). Predicting flexible length linear B-cell epitopes. In: Computational systems bioinformatic, 7 (pp. 121–132). Stanford, CA: World Scientific.

  29. El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B‐cell epitopes using string kernels. Journal of Molecular Recognition, 21(4), 243–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, J., Liu, H., Yang, J., & Chou, K.-C. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids., 33(3), 423–428.

    CAS  PubMed  Google Scholar 

  31. Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prickett, S., Rolland, J., & O’Hehir, R. (2015). Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clinical & Experimental Allergy, 45(6), 1015–1026.

    CAS  Google Scholar 

  33. Naz, A., Awan, F. M., Obaid, A., Muhammad, S. A., Paracha, R. Z., & Ahmad, J., et al. (2015). Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infection Genetics and Evolution, 32, 280–291.

    CAS  Google Scholar 

  34. Patra P, Mondal N, Patra BC, Bhattacharya M. (2019) Epitope-based vaccine designing of nocardia asteroides targeting the virulence factor mce-family protein by immunoinformatics approach. International Journal of Peptide Research and Therapeutics, 1–12.

  35. Saha, C. K., Hasan, M. M., Hossain, M. S., Jahan, M. A., & Azad, A. K. (2017). In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pacific Journal of Tropical Medicine, 10(6), 529–538.

    CAS  PubMed  Google Scholar 

  36. Singh, H., & Raghava, G. (2003). ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics, 19(8), 1009–1014.

    CAS  PubMed  Google Scholar 

  37. Singh, H., & Raghava, G. (2001). ProPred: prediction of HLA-DR binding sites. Bioinformatics, 17(12), 1236–1237.

    CAS  PubMed  Google Scholar 

  38. Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of Biomedical Informatics, 53, 405–414.

    PubMed  Google Scholar 

  39. Narula, A., Pandey, R. K., Khatoon, N., Mishra, A., & Prajapati, V. K. (2018). Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infection Genetics and Evolution, 61, 4–15.

    CAS  Google Scholar 

  40. Horohov, D., Dunham, J., Liu, C., Betancourt, A., Stewart, J., & Page, A., et al. (2015). Characterization of the in situ immunological responses to vaccine adjuvants. Veterinary Immunology and Immunopathology, 164(1-2), 24–29.

    CAS  PubMed  Google Scholar 

  41. Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., & Sykes, B. D., et al. (2003). VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Research, 31(13), 3316–3319.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Roy, A., Yang, J., & Zhang, Y. (2012). COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, 40(W1), W471–W7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng, J., & Xu, J. (2011). RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins: Structure, Function, and Bioinformatics, 79(S10), 161–171.

    CAS  Google Scholar 

  44. Khoury, G. A., Smadbeck, J., Kieslich, C. A., & Floudas, C. A. (2014). Protein folding and de novo protein design for biotechnological applications. Trends in Biotechnology, 32(2), 99–109.

    CAS  PubMed  Google Scholar 

  45. Källberg, M, Margaryan, G, Wang, S, Ma, J, Xu, J. (2014). RaptorX server: a resource for template-based protein structure modeling. In: Protein structure prediction (pp. 17–27). New York, NY: Humana Press.

  46. Webb, B, Sali, A. (2014). Protein structure modeling with MODELLER. Protein structure prediction (pp. 1–15). Springer.

  47. Rodriguez, J., Parrilla, P., Moreno, A., Sola, J., Pinero, A., & Sa, Ortiz, et al. (1998). Insular carcinoma: an infrequent subtype of thyroid cancer. Journal of the American College of Surgeons, 187(5), 503–508.

    CAS  PubMed  Google Scholar 

  48. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W10.

    PubMed  PubMed Central  Google Scholar 

  49. Laskowski, R, MacArthur, M, Thornton, J. (2006). PROCHECK: validation of protein-structure coordinates.

  50. Bhatt, D., Saxena, S. C., Jain, S., Dobriyal, A. K., Majee, M., & Arora, S. (2013). Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana. Molecular Biology Reports, 40(2), 1155–1165.

    CAS  PubMed  Google Scholar 

  51. Sippl, M. J. (1995). Knowledge-based potentials for proteins. Current Opinion in Structural Biology, 5(2), 229–235.

    CAS  PubMed  Google Scholar 

  52. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.

    CAS  Google Scholar 

  53. Piplani, S., Saini, V., Niraj, R. R. K., Pushp, A., & Kumar, A. (2016). Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs. Computational Biology and Chemistry, 60, 1–8.

    CAS  PubMed  Google Scholar 

  54. Srivastava, P. N., Jain, R., Dubey, S. D., Bhatnagar, S., & Ahmad, N. (2016). Prediction of epitope-based peptides for vaccine development from coat proteins GP2 and VP24 of Ebola virus using immunoinformatics. International Journal of Peptide Research and Therapeutics, 22(1), 119–133.

    CAS  Google Scholar 

  55. Rahman, M. S., Rahman, M. K., Saha, S., Kaykobad, M., & Rahman, M. S. (2019). Antigenic: an improved prediction model of protective antigens. Artificial Intelligence in Medicine, 94, 28–41.

    PubMed  Google Scholar 

  56. Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics., 8(1), 4.

    PubMed  PubMed Central  Google Scholar 

  57. Bonakdar, A., Sahebazzamani, F., Rasaee, M. J., Hosseinkhani, S., Rahbarizadeh, F., & Mahboudi, F., et al. (2019). In silico design and in vitro characterization of a recombinant antigen for specific recognition of NMP22. International Journal of Biological Macromolecules, 140, 69–77.

    CAS  PubMed  Google Scholar 

  58. Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M. R., & Ghasemi, Y. (2017). Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Molecular BioSystems., 13(4), 699–713.

    CAS  PubMed  Google Scholar 

  59. Saha, S., & Raghava, G. (2006). AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(suppl_2), W202–W9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Khatoon, N., Ojha, R., Mishra, A., & Prajapati, V. K. (2018). Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism. Vaccine., 36(42), 6290–6300.

    CAS  PubMed  Google Scholar 

  61. Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278.

    PubMed  Google Scholar 

  62. Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 33(suppl_2), W363–W7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yadav, S., Pandey, S. K., Singh, V. K., Goel, Y., Kumar, A., & Singh, S. M. (2017). Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS ONE., 12(5), e0176403.

    PubMed  PubMed Central  Google Scholar 

  65. Lankapalli, A. R., & Kannabiran, K. (2013). Interaction of marine Streptomyces compounds with selected cancer drug target proteins by in silico molecular docking studies. Interdisciplinary Sciences: Computational. Life Sciences, 5(1), 37–44.

    CAS  Google Scholar 

  66. Guo, F., Li, S. C., Wang, L., & Zhu, D. (2012). Protein-protein binding site identification by enumerating the configurations. BMC Bioinformatics, 13(1), 158.

    PubMed  PubMed Central  Google Scholar 

  67. Prabhakar, P. K., Srivastava, A., Rao, K. K., & Balaji, P. V. (2016). Monomerization alters the dynamics of the lid region in Campylobacter jejuni CstII: an MD simulation study. Journal of Biomolecular Structure and Dynamics, 34(4), 778–791.

    CAS  PubMed  Google Scholar 

  68. López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic Acids Research, 42(W1), W271–W276.

    PubMed  PubMed Central  Google Scholar 

  69. Hasan, M., Ghosh, P. P., Azim, K. F., Mukta, S., Abir, R. A., & Nahar, J., et al. (2019). Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microbial Pathogenesis., 130, 19–37. https://doi.org/10.1016/j.micpath.2019.02.023.

    Article  CAS  PubMed  Google Scholar 

  70. Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., & Hempel, D. C., et al. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(suppl_2), W526–W531.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pandey, R. K., & Prajapati, V. K. (2019). Exploring sand fly salivary proteins to design multiepitope subunit vaccine to fight against visceral leishmaniasis. Journal of Cellular Biochemistry, 120(2), 1141–1155.

    CAS  Google Scholar 

  72. Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285.

    PubMed  PubMed Central  Google Scholar 

  73. Kamens, J. (2014). The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Research, 43(D1), D1152–D1157.

    PubMed  PubMed Central  Google Scholar 

  74. Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T-and B-cell epitope prediction. Journal of Immunology Research, 2680160, 1–14.

    Google Scholar 

  75. Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369.

    CAS  PubMed  Google Scholar 

  76. Prantner, D., Perkins, D. J., Lai, W., Williams, M. S., Sharma, S., & Fitzgerald, K. A., et al. (2012). 5, 6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. Journal of Biological Chemistry, 287(47), 39776–39788.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, J.-H., Ko, S.-M., & Park, H.-S. (2008). Toward the virtual screening of α-glucosidase inhibitors with the homology-modeled protein structure. Bulletin of the Korean Chemical Society, 29(5), 921–927.

    CAS  Google Scholar 

  78. Bianchi, V., Bulek, A., Fuller, A., Lloyd, A., Attaf, M., & Rizkallah, P. J., et al. (2016). A molecular switch abrogates glycoprotein 100 (gp100) T-cell receptor (TCR) targeting of a human melanoma antigen. The Journal of Biological Chemistry, 291(17), 8951–8959. https://doi.org/10.1074/jbc.M115.707414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patra, P, Ghosh, P, Patra, B. C., Bhattacharya, M. (2019) Biocomputational analysis and in silico characterization of an angiogenic protein (RNase5) in Zebrafish (Danio rerio). International Journal of Peptide Research and Therapeutics, 1–11.

  80. Schrodinger, L (2010). The PyMOL molecular graphics system. Version 1.5.0.4.

  81. Bauer, J. A., Pavlović, J., & Bauerová-Hlinková, V. (2019). Normal mode analysis as a routine part of a structural investigation. Molecules., 24(18), 3293.

    CAS  PubMed Central  Google Scholar 

  82. Atapour, A., Negahdaripour, M., Ghasemi, Y., Razmjuee, D., Savardashtaki, A., & Mousavi, S. M. et al. (2019). In silico designing a candidate vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 26, 369–380.

    Google Scholar 

  83. Pollock, P., Ludgate, A., & Wassersug, R. (2015). In 2124, half of all men can count on developing prostate cancer. Current Oncology, 22(1), 10.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pilleron, S., Sarfati, D., Janssen‐Heijnen, M., Vignat, J., Ferlay, J., & Bray, F., et al. (2019). Global cancer incidence in older adults, 2012 and 2035: a population‐based study. International Journal of Cancer, 144(1), 49–58.

    CAS  PubMed  Google Scholar 

  85. Carlsson, S., Assel, M., Ulmert, D., Gerdtsson, A., Hugosson, J., & Vickers, A., et al. (2017). Screening for prostate cancer starting at age 50–54 years. A population-based cohort study. European Urology, 71(1), 46–52.

    PubMed  Google Scholar 

  86. Wijk, M. V., Garland, S. N., Wall, K., Sathya, J., & Thoms, J. (2019). 0825 The effect of androgen deprivation therapy on insomnia symptoms, fatigue, mood, and hot flashes in men with non-metastatic prostate cancer. Sleep., 42(Supplement_1), A331–A.

    Google Scholar 

  87. Mayer, M. J., Klotz, L. H., & Venkateswaran, V. (2017). The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer. The Journal of Urology, 197(4), 1068–1075.

    CAS  PubMed  Google Scholar 

  88. Poeppel, T. D., Handkiewicz-Junak, D., Andreeff, M., Becherer, A., Bockisch, A., & Fricke, E., et al. (2018). EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 45(5), 824–845.

    CAS  PubMed  Google Scholar 

  89. Higano, C. S., Armstrong, A. J., Sartor, A. O., Vogelzang, N. J., Kantoff PW, McLeod DG et al. (2019). Real‐world outcomes of sipuleucel‐T treatment in PROCEED, a prospective registry of men with metastatic castration‐resistant prostate cancer. Cancer.

  90. Namvar, A., Panahi, H. A., Agi, E., & Bolhassani, A. (2020). Development of HPV 16, 18, 31, 45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnology Letters., 8, 1–6.

    Google Scholar 

  91. Bhattacharya, M., Malick, R. C., Mondal, N., Patra, P., Pal, B. B., & Patra, B. C., et al. (2020). Computational characterization of epitopic region within the outer membrane protein candidate in Flavobacterium columnare for vaccine development. Journal of Biomolecular Structure and Dynamics, 38(2), 450–459.

    CAS  PubMed  Google Scholar 

  92. Vishnu, U. S., Sankarasubramanian, J., Gunasekaran, P., & Rajendhran, J. (2017). Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infection, Genetics and Evolution, 55, 151–158.

    CAS  PubMed  Google Scholar 

  93. Lockhat, H. A., Silva, J. R., Alves, C. N., Govender, T., Lameira, J., & Maguire, G. E., et al. (2016). Binding free energy calculations of nine FDA‐approved protease inhibitors against HIV‐1 subtype C I36T↑ T containing 100 amino acids per monomer. Chemical Biology & Drug Design, 87(4), 487–498.

    CAS  Google Scholar 

  94. Camacho, C. J., & Vajda, S. (2002). Protein–protein association kinetics and protein docking. Current Opinion in Structural Biology, 12(1), 36–40.

    CAS  PubMed  Google Scholar 

  95. Sayed, S. B., Nain, Z., Abdullah, F., Haque, Z., Rahman, S. R., Tasmin, R., et al. (2019). Immunoinformatics-guided designing of peptide vaccine against Lassa virus with dynamic and immune simulation studies. Preprints 2019, 2019090076 https://doi.org/10.20944/preprints201909.0076.v2.

Download references

Acknowledgements

This research was supported by Hallym University Research Fund and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A2B4012944).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Soo Lee or Chiranjib Chakraborty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, P., Bhattacharya, M., Sharma, A.R. et al. Identification and Design of a Next-Generation Multi Epitopes Bases Peptide Vaccine Candidate Against Prostate Cancer: An In Silico Approach. Cell Biochem Biophys 78, 495–509 (2020). https://doi.org/10.1007/s12013-020-00912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00912-7

Keywords

Navigation