Skip to main content
Log in

Ontologically simple theories do not indicate the true nature of complex biological systems: three test cases

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

A longstanding philosophical premise perceives simplicity as a desirable attribute of scientific theories. One of several raised justifications for this notion is that simple theories are more likely to indicate the true makeup of natural systems. Qualitatively parsimonious hypotheses and theories keep to a minimum the number of different postulated entities within a system. Formulation of such ontologically simple working hypotheses proved to be useful in the experimental probing of narrowly defined bio systems. It is less certain, however, whether qualitatively parsimonious theories are effective indicators of the true nature of complex biological systems. This paper assesses the success of ontologically simple theories in envisaging the makeup of three complex systems in bacteriology, immunology, and molecular biology. Evidence shows that parsimonious theories completely misconstrued the actual ontologically complex constitutions of the three examined systems. Since evolution and selective pressures typically produce ontologically intricate rather than simple bio systems, qualitatively parsimonious theories are mostly inapt indicators of the true nature of complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable

Notes

  1. Carroll, Sean. “The physicist who made sense of the universe” (obituary to Murray Gell-Mann). New York Times, May 28, 2019 https://www.nytimes.com/2019/05/28/opinion/gell-mann-physics.html?searchResultPosition=2.

  2. This strategy was gainfully used in experiments that led to discoveries of many individual components of biomolecular machineries such as the ubiquitin–proteasome protein breakdown system, various signal transduction pathways, or the protein biosynthesis machinery.

  3. The term "bacterium", meaning “cane” in Latinized Greek, was coined by Christian Gottfried Ehrenberg in 1828, more than 150 years after Leeuwenhoek’s original observations. The bacterium that Ehrenberg described was a rod-like non-spore-forming microorganism.

  4. English translation: (Lagerkvist 2003, pp. 63–64).

  5. English translation: (Bergstrand 1920, p. 22).

  6. Bizio’s letter ‘to the most eminent priest, Angelo Bellani concerning the phenomenon of the red-colored polenta’. Translation into English by (Merlino 1924).

  7. English translation: (Brock 1999, pp. 210–215).

  8. English translation: (Bary 1887a, p. 473).

  9. English translation: (Carter 1987, p. 84).

  10. Attendance was restricted, however, to males only as was documented in an unsigned Lancet editorial (Anon 1881, p. 290): “Early in the course of the arrangements made for the recent meeting the Executive Committee decided to limit the invitations to be present to men only. It has been reported by some of our lay contemporaries that this decision was not that of the majority of the Committee, who "were over-ruled by Sir WILLIAM JENNER, who declared that he was empowered to remove the name of the QUEEN as patron of the Congress if lady doctors were admitted to the medical meetings." We have-the highest authority for stating that this report is entirely and totally without foundation, that no such statement was ever made by Sir WILLIAM JENNER, and that the decision arrived at was the deliberate conviction of the large majority of the Committee. We regret to see that this wise resolve has been protested against " by forty-three duly qualified medical women." It is well to bear in mind that the Congress is a voluntary assemblage of medical men for a certain purpose, and that those who are not asked to join suffer no infringement of their rights.”

  11. English translation and commentary by Thomas D. Brock: https://lib.guides.umbc.edu/ld.php?content_id=46751829.

  12. Within just 7 years after Koch isolated Mycobacterium tuberculosis, investigators identified the glanders causing Burkholderia mallei (Löffler and Schütz, 1882); Vibrio cholera, (Koch, 1884); Corynebacterium diphtheria, (Löffler, 1884); typhoid fever causing Salmonella, (Gaffky, 1884); Streptococcus and Staphylococcus from infected wounds, (Rosenbach, 1884); Neisseria gonorrhea, (Bumm, 1885; Neisser, 1879; Sinclair, 1888); Escherichia coli, (Escherich, 1885); Streptococcus pneumonia (pneumococcus), (Fränkel, 1884, 1886); Malta fever causing Brucella, (Bruce, 1887); Meningitis causing Neisseria meningitides, (Meningococcus) (Weichselbaum, 1887); plague causing Yersinia pestis, (Kitasato, 1894) and tetanus causing Clostridium tetani, (Kitasato, 1889). This string of discoveries of new bacterial species continued into the early twentieth century.

  13. This obvious collision between syntactic and ontological simplicities in competing theories on one system is indicative of the paradoxically complex nature of the very concept of simplicity itself. Discussion of this point is beyond the scope of this paper.

  14. The Ava Helen and Linus Pauling Papers Archive: http://scarc.library.oregonstate.edu/coll/pauling/proteins/narrative/page20.html.

  15. The Ava Helen and Linus Pauling Papers Archive: http://scarc.library.oregonstate.edu/coll/pauling/proteins/notes/sci14.038.9-ts-19410318.html.

  16. Online immunology system databases are listed in: https://omictools.com/immunology-databases-category.

  17. See for instance databases of immune epitopes (Sathiamurthy et al. 2005): http://www.iedb.org/home_v3.php; of haptens and anti-hapten antibodies (Singh et al. 2006): http://crdd.osdd.net/raghava/haptendb/; and gene ontology annotations, (Diehl et al. 2007; Lovering et al. 2008) of genes involved in humoral immune response: http://www.informatics.jax.org/go/term/GO:0006959 and in abnormal humoral immune response: https://rgd.mcw.edu/rgdweb/ontology/view.html?acc_id=MP:0001800.

  18. Facsimile of Gamow’s July 8, 1953 letter to Watson and Crick, under “Gamow memorabilia” in Watson (2001).

  19. Autograph of the October 22, 1953 letter in the Oregon State University Linus Pauling Online Archive: http://scarc.library.oregonstate.edu/coll/pauling/dna/corr/sci9.001.43-gamow-lp-19531022.html.

  20. Facsimile of the handwritten manuscript is at the Wellcome Library Web site: https://wellcomelibrary.org/item/b18186300 and a typewritten version is in the NIH ‘Profiles in Science’ online archive: https://profiles.nlm.nih.gov/spotlight/sc/catalog/nlm:nlmuid-101584582X73-doc.

  21. Gamow’s assembled a virtual think tank of leading biologists, physicists and mathematicians who searched for solutions to the coding and translation problem (Fry 2016b, pp. 288–289).

References

  • Absolon, K. B. (1977). Theodor Billroth in Vienna, 1867–1880. ANZ Journal of Surgery,47(6), 837–844.

    Google Scholar 

  • Absolon, K. B., Absolon, M. J., & Zientek, R. (1970). From antisepsis to asepsis. Louis Pasteur’s publication on “The germ theory and its application to medicine and surgery”. Review of Surgery, 27(4), 245–258.

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Molecular biology of the cell (6th ed.). New York: Garland Science.

    Google Scholar 

  • Alexander, J. (1932). Some intracellular aspects of life and disease. Protoplasma,14(1), 296–306.

    Google Scholar 

  • Amann, R., & Rosselló-Móra, R. (2016). After all, only millions? mBio, 7(4), e00999–00916.

  • Andersen, G. R., Nissen, P., & Nyborg, J. (2003). Elongation factors in protein biosynthesis. Trends in Biochemical Sciences,28(8), 434–441.

    Google Scholar 

  • Anon. (1874). Coccobacteria Septica. Edinburgh Medical Journal,20(4), 366–374.

    Google Scholar 

  • Anon. (1881). The International Medical congress. The Lancet,118(3024), 297–310.

    Google Scholar 

  • Anon. (2011). Microbiology by numbers. Nature Reviews Microbiology,9(9), 628.

    Google Scholar 

  • Arquilla, E. R., & Finn, J. (1963). Genetic differences in antibody production to determinant groups on insulin. Science,142(3590), 400–401.

    Google Scholar 

  • Bail, O. (1914). Untersuchungen über normalhämolysine. Immunitätforschung,21, 202.

    Google Scholar 

  • Bail, O., & Tsuda, K. (1909). Versuche über bakteriolytische immunkörper mit besonderer berücksichtigung des normalen indenserums. Zeitschrift für Immunitätsforschung und Experimentelle Therapie,1(1), 546–612.

    Google Scholar 

  • Baker, A. (2003). Quantitative parsimony and explanatory power. The British Journal for the Philosophy of Science,54(2), 245–259.

    Google Scholar 

  • Baker, A. (2016). Simplicity. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: Stanford University Center for the Study of Language and Information. https://plato.stanford.edu/entries/simplicity/.

  • Barciszewska, M. Z., Perrigue, P. M., & Barciszewski, J. (2016). tRNA—The golden standard in molecular biology. Molecular BioSystems,12(1), 12–17.

    Google Scholar 

  • Baron, S., & Tallant, J. (2018). Do not revise Ockham’s Razor without necessity. Philosophy and Phenomenological Research,96(3), 596–619.

    Google Scholar 

  • Bary, A. D. (1868). Zur Beurteilung der Pilzschriften des Herrn Hallier. Botanische Zeitung,26, 294–296.

    Google Scholar 

  • Bary, A. D. (1884). Vergleichende Morphologie und Biologie der Pilze Mycetozoen und Bacterien. Leipzig: Engelmann.

    Google Scholar 

  • Bary, A. D. (1887a). Comparative Morphology and Biology of the Fungi Mycetozoa and Bacteria (H. E. F. Garnsey, Trans.). Oxford: Clarendon.

  • Bary, A. D. (1887b). Lectures on Bacteria (2nd ed.). Oxford: Clarendon.

    Google Scholar 

  • Belfanti, S., & Carbone, T. (1898). Produzione di sostance tossiche nel siero di animali inoculati con sangue eterogeneo. Giornale della Accademia di Medicina di Torino,46, 321–324.

    Google Scholar 

  • Berg, P. (1956). Acyl adenylates: The interaction of adenosine triphosphate and l-methionine. Journal of Biological Chemistry,222(2), 1025–1034.

    Google Scholar 

  • Bergstrand, H. (1920). On the nature of bacteria. The Journal of Infectious Diseases, 27(1), 1–22.

    Google Scholar 

  • Billroth, T. (1874). Untersuchungen über die Vegetationsformen von Coccobacteria septica und den Antheil, welchen sie an der Entstehung und Verbreitung der accidentellen Wundkrankheiten haben: Versuch einer wissenschaftlichen Kritik der verschiedenen Methoden antiseptischer Wundbehandlung. Berlin: G. Reimer.

  • Billroth, T., & Ehrlich, F. (1877). Untersuchungen über Coccobacteria septica. Archiv für Klinische Chirurgie,20, 403–433.

    Google Scholar 

  • Bordet, J. (1899). Sur l’agglutination et la dissolution des globules rouges par le sérum des animaux injectés de sang défibriné. Annales de l’Institut Pasteur,12, 688–695.

    Google Scholar 

  • Brachet, J. (1955). Recherches sur les interactions biochimiques entre le noyau et le cytoplasme chez les organismes unicellulaires. I. Amoeba proteus. Biochimica et Biophysica Acta, 18(2), 247–268.

  • Bradley, D. (2018). Philosophers should prefer simpler theories. Philosophical Studies,175(12), 3049–3067.

    Google Scholar 

  • Brefeld, O. (1872). Botanische Untersuchungen über Schimmelpilze. I. Heft: Mucor mucedo, Chaetocladium jones’ii, Piptocephalis freseniana. Zygomyceten. Leipzig: Arthur Felix.

  • Brefeld, O. (1881). Botanische Untersuchungen Über Schimmelpilze Culturmethoden Leipzig: Arthur Felix.

  • Breinl, F., & Haurowitz, F. (1930). Chemische untersuchungen des präezipitates aus häemoglobin und antihäemoglobin-serum und bemerkungen über die batur der antiköerper. Hoppe-Seyler Zeitschrift für Physiologische Chemie,192, 45–57.

    Google Scholar 

  • Brenner, A. (2015). Mereological nihilism and theoretical unification. Analytic Philosophy,56(4), 318–337.

    Google Scholar 

  • Brenner, A. (2017). Simplicity as a criterion of theory choice in metaphysics. Philosophical Studies,174(11), 2687–2707.

    Google Scholar 

  • Brenner, S., Jacob, F., & Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature,190(4776), 576–581.

    Google Scholar 

  • Brock, T. D. (1999) Milestones in Microbiology. Washington, DC: ASM Press. https://lib.guides.umbc.edu/ld.php?content_id=46728087,

  • Brown, B. G. (1950). Science its method and its philosophy. London: George Allen & Unwin.

    Google Scholar 

  • Buchner, H. (1893). Ueber bacteriengifte und gegengifte. Münchener Medizinische Wochenschrift,40, 449.

    Google Scholar 

  • Buklijas, T. (2007). Surgery and national identity in late nineteenth-century Vienna. Studies in the History and Philosophy of Biology and Biomedical Sciences,38(4), 756–774.

    Google Scholar 

  • Bulloch, W. (1938). The history of bacteriology (1st ed.). London: Oxford University Press.

    Google Scholar 

  • Bunge, M. (1961). The weight of simplicity in the construction and assaying of scientific theories. Philosophy of Science,28(2), 120–149.

    Google Scholar 

  • Burian, R. M. (1993). Technique, task definition, and the transition from genetics to molecular genetics: Aspects of the work on protein synthesis in the laboratories of J. Monod and P. Zamecnik. Journal of the History of Biology, 26(3), 387–407.

  • Burnet, F. M. (1941). Production of Antibodies: A Review and a Theoretical Discussion (Monograph no. 1 of the Walter and Eliza Hall Institute). Melbourne: Macmillan.

  • Burnet, F. M. (1957). A modification of Jerne’s theory of antibody production using the concept of clonal selection. The Australian Journal of Science,20(3), 67–69.

    Google Scholar 

  • Burnet, F. M. (1959). The clonal selection theory of acquired immunity, Abraham Flexner lecture 1958. Nashville, TN: Vanderbilt University Press.

    Google Scholar 

  • Burnet, F. M. (1964). A Darwinian approach to immunity. Nature,203(4944), 451–454.

    Google Scholar 

  • Burnet, F. M., & Fenner, F. (1949). The production of antibodies: Monograph of the walter and Eliza Hall Institute of Research in pathology and medicine (2nd ed.). Melbourne: Macmillan.

    Google Scholar 

  • Caldwell, P. C., & Hinshelwood, C. (1950). Some considerations on autosynthesis in bacteria. Journal of the Chemical Society,4, 3156–3159.

    Google Scholar 

  • Cambrosio, A., Jacobi, D., & Keating, P. (2005). Arguing with images: Pauling’s theory of antibody formation. Representations,89(1), 94–130.

    Google Scholar 

  • Cameron, R. P. (2010). How to have a radically minimal ontology. Philosophical Studies,151(2), 249–264.

    Google Scholar 

  • Carter, K. C. (1987). Edwin Klebs' criteria for disease causality. Medizin historisches Journal, 22(1), 80–89.

    Google Scholar 

  • Casamassimi, A., & Ciccodicola, A. (2019). Transcriptional regulation: Molecules, involved mechanisms, and misregulation. International Journal of Molecular Sciences, 20(6), 1281 (5 p.).

  • Chan, J. Z. M., Halachev, M. R., Loman, N. J., Constantinidou, C., & Pallen, M. J. (2012). Defining bacterial species in the genomic era: Insights from the genus Acinetobacter. BMC Microbiology,12(1), 302.

    Google Scholar 

  • Chu, J., Cargnello, M., Topisirovic, I., & Pelletier, J. (2016). Translation initiation factors: Reprogramming protein synthesis in cancer. Trends in Cell Biology,26(12), 918–933.

    Google Scholar 

  • Chung, K.-T., & Liu, J.-K. (2017). Ferdinand Julius Cohn (1828–1898): Pioneer of Bacteriology. Pioneers in microbiology (pp. 69–74). Singapore: World Scientific.

    Google Scholar 

  • Chung, M., Munro, J. B., Tettelin, H., & Dunning Hotopp, J. C. (2018). Using core genome alignments to assign bacterial species. mSystems, 3(6), e00236–00218.

  • Coelho, M. T. P., Diniz-Filho, J. A., & Rangel, T. F. (2019). A parsimonious view of the parsimony principle in ecology and evolution. Ecography,42(5), 968–976.

    Google Scholar 

  • Cohn, F. (1854). Untersuchungen über die Entwickelungsgeschichte der mikroskopischen Algen und Pilze. Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum,24, 103–256.

    Google Scholar 

  • Cohn, F. (1872a). Über die Bakterien, Die Kleinsten Lebenden Wesen. Berlin: Carl Habel.

    Google Scholar 

  • Cohn, F. (1872b). Untersuchungen über bacterien. Beiträge zur Biologie der Pflanzen,1(2), 127–224.

    Google Scholar 

  • Cohn, F. (1875). Untersuchungen über bakterien, II. Beiträge zur Biologie der Pflanzen,1(3), 141–207.

    Google Scholar 

  • Cohn, F. (1876). Untersuchungen über bacterien, IV. Beiträge zur Biologie der Pflanzen,2(2), 249–276.

    Google Scholar 

  • Cohn, F. (1881). Bacteria: The smallest of living organims (C. S. Dolley, Trans.). Rochester, NY: Frank D. Phinney.

  • Cohn, M., Mitchison, N. A., Paul, W. E., Silverstein, A. M., Talmage, D. W., & Weigert, M. (2007). Reflections on the clonal-selection theory. Nature Reviews Immunology,7(10), 823–830.

    Google Scholar 

  • Cole, C. N., & Scarcelli, J. J. (2006). Transport of messenger RNA from the nucleus to the cytoplasm. Current Opinion in Cell Biology,18(3), 299–306.

    Google Scholar 

  • Crick, F. (1955). On degenarate templates and the adaptor hypothsis: A note to the RNA Tie Club (unpublished). https://profiles.nlm.nih.gov/spotlight/sc/catalog/nlm:nlmuid-101584582X73-doc.

  • Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology,12, 138–163.

    Google Scholar 

  • Crick, F. (1988). What mad puersuit: A personal view of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Crick, F., & Watson, J. D. (1956). Structure of small viruses. Nature,177(4506), 473–475.

    Google Scholar 

  • Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution (Cambridge studies in philosophy and biology). Cambridge: Cambridge University Press.

    Google Scholar 

  • Darden, L., & Craver, C. (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in History and Philosophy of Science C: Studies in History and Philosophy of Biological and Biomedical Sciences,33(1), 1–28.

    Google Scholar 

  • Davern, C. I., & Meselson, M. (1960). The molecular conservation of ribonucleic acid during bacterial growth. Journal of Molecular Biology,2(3), 153–160.

    Google Scholar 

  • Davie, E. W., Koningsberger, V. V., & Lipmann, F. (1956). The isolation of a tryptophan-activating enzyme from pancreas. Archives of Biochemistry and Biophysics,65(1), 21–38.

    Google Scholar 

  • Demoss, J. A., & Novelli, G. D. (1956). An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochimica et Biophysica Acta,22(1), 49–61.

    Google Scholar 

  • Dever, T. E., & Green, R. (2012). The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harbor Perspectives in Biology,4(7), a013706.

    Google Scholar 

  • Diehl, A. D., Lee, J. A., Scheuermann, R. H., & Blake, J. A. (2007). Ontology development for biological systems: Immunology. Bioinformatics,23(7), 913–915.

    Google Scholar 

  • Doolittle, W. F., & Zhaxybayeva, O. (2009). On the origin of prokaryotic species. Genome Research,19(5), 744–756.

    Google Scholar 

  • Drews, G. (1999). Ferdinand Cohn, a founder of modern microbiology. ASM News,65(8), 547–553.

    Google Scholar 

  • Drews, G. (2000). The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews,24(3), 225–249.

    Google Scholar 

  • Dreyfus, M., & Régnier, P. (2002). The Poly(A) tail of mRNAs: Bodyguard in eukaryotes, scavenger in Bacteria. Cell,111(5), 611–613.

    Google Scholar 

  • Dujardin, F. (1841). Histoire Naturelle des Zoophytes. Infusoires, Comprenant la Physiologie et la Classification de ces Animaux, et la Manière de les Ètudier à L’aide du Microscope. Paris: Librairie Encyclopédique de Roret.

  • Dykhuizen, D. E., & Green, L. (1991). Recombination in Escherichia coli and the definition of biological species. Journal of Bacteriology,173(22), 7257–7268.

    Google Scholar 

  • Editorial. (1881). The international medical congress of 1881. Glasgow Medical Journal,15(3), 185–191.

    Google Scholar 

  • Edmonds, B. (2007). Simplicity is not truth-indicative. In C. Gershenson, A. Diederik, & B. Edmonds (Eds.), Worldviews, Science and Us (pp. 65–80). Singapore World Scientific.

  • Edwards, A. W. F. (1996). The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic rees. Systematic Biology,45(1), 79–91.

    Google Scholar 

  • Ehrebnberg, C. G. (1838). Die Infusionsthierchen als Vollkommene Organismen. Ein Blick in das Tiefere Organische Leben der Natur. Leipzig: von Leopold Voss.

    Google Scholar 

  • Ehrlich, P. (1897). Die werthemessung des Diphtherieheilserums und deren theoretische grundlagen. Klinische Jahrbuch,6, 299–326.

    Google Scholar 

  • Ehrlich, P. (1900). Croonian lecture—On immunity with special reference to cell life. Proceedings of the Royal Society of London,66(424–433), 424–448.

    Google Scholar 

  • Ehrlich, P. (1960). The collected papers of Paul Ehrlich. Volume II: Immunology and cancer research. London: Pergamon Press.

  • Eisen, H. N. (2014). Affinity enhancement of antibodies: How low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunology Research,2(5), 381–392.

    Google Scholar 

  • Felsenstein, J. (1973). Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Biology,22(3), 240–249.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Biology,27(4), 401–410.

    Google Scholar 

  • Felsenstein, J. (2004). Inferring phylogenies. Sunderland, MA: Sinauer.

    Google Scholar 

  • Fischer, D. S. (1964). Theories of antibody formation: A review. Yale Journal of Biology and Medicine,37(1), 1–30.

    Google Scholar 

  • Fitz, A. (1882). Ueber Spaltpilzgahrungen. Berichte der Deutschen Chemischen Gesellschaft,15, 867.

    Google Scholar 

  • Fitzpatrick, S. (2013). Simplicity in the philosophy of science. In J. Fieser, & B. Dowden (Eds.), Internet encyclopedia of philosophy. https://www.iep.utm.edu/simplici/.

  • Forsdyke, D. R. (1995). The origins of the clonal selection theory of immunity as a case study for evaluation in science. FASEB Journal,9(2), 164–166.

    Google Scholar 

  • Forsdyke, D. R. (2012). Immunology (1955–1975): The natural selection theory, the Two signal hypothesis and positive repertoire selection. Journal of the History of Biology,45(1), 139–161.

    Google Scholar 

  • Forster, M., & Sober, E. (1994). How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions. The British Journal for the Philosophy of Science,45(1), 1–35.

    Google Scholar 

  • Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy,71(1), 5–19.

    Google Scholar 

  • Fry, M. (2016a). Dissolution of hypotheses in biochemistry: Three case studies. History and Philosophy of the Life Sciences,38(4), 17.

    Google Scholar 

  • Fry, M. (2016b). Landmark experiments in molecular biology. Amsterdam: Elsevier.

    Google Scholar 

  • Gamow, G. (1954a). Possible mathematical relation between deoxyribonucleic acid and proteins. Biologiske Meddelelser udviket af Det Kongelige Danske Videnskabernes Selskab,22(3), 1–11.

    Google Scholar 

  • Gamow, G. (1954b). Possible relation between deoxyribonucleic acid and protein structures. Nature,173(4398), 318.

    Google Scholar 

  • Gauch, H. G. (1993). Prediction, parsimony and noise. American Scientist,81(5), 468–478.

    Google Scholar 

  • Gauch, H. G. (2003). Scientific method in practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gauch, H. G. (2006). Winning the accuracy game. American Scientist,94(2), 133–141.

    Google Scholar 

  • Gernet, D. (2007). Ockham’s Razor and its improper use. Journal of Scientific Exploration,21(1), 135–140.

    Google Scholar 

  • Giege, R. (2006). The early history of tRNA recognition by aminoacyl-tRNA synthetases. Journal of Biosciences,31(4), 477–488.

    Google Scholar 

  • Goodman, N. (1958). The test of simplicity. Science,128(3331), 1064–1069.

    Google Scholar 

  • Green, I., Vassalli, P., Nussenzweig, V., & Benacerraf, B. (1967). Specificity of the antibodies produced by single cells following immunization with antigens bearing two types of antigenic determinants. Journal of Experimental Medicine,125(3), 511–526.

    Google Scholar 

  • Greganova, E., Altmann, M., & Bütikofer, P. (2011). Unique modifications of translation elongation factors. FEBS Journal,278(15), 2613–2624.

    Google Scholar 

  • Gros, F., Hiatt, H., Gilbert, W., Kurland, C. G., Risebrough, R. W., & Watson, J. D. (1961). Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature,190(4776), 581–585.

    Google Scholar 

  • Grote, M. (2018). Petri dish versus Winogradsky column: A longue durée perspective on purity and diversity in microbiology, 1880s–1980s. History and Philosophy of Life Sciences,40(1), 11.

    Google Scholar 

  • Grünbaum, A. (2000). A new critique of theological interpretations of physical cosmology. The British Journal for the Philosophy of Science,51(1), 1–43.

    Google Scholar 

  • Grünbaum, A. (2007). Is simplicity evidence of truth? American Philosophical Quarterly,45(2), 179–189.

    Google Scholar 

  • Grünbaum, A. (2009). Why is there a world AT ALL, rather than just nothing? Ontology Studies,9, 7–19.

    Google Scholar 

  • Haber, E. (1964). Recovery of antigenic specificity after denaturation and complete reduction of disulfides in a papain fragment of antibody. Proceedings of the National Academy of Sciences of the United States of America,52(4), 1099–1106.

    Google Scholar 

  • Hales, S. D. (1997). Ockham’s disposable razor. In P. Weingartner, G. Schurz, & G. Dorn (Eds.), The role of pragmatics in contemporary philosophy: Contributions of the Austrian Ludwig Wittgenstein Society (pp. 356–361). Vienna: Hoelder-Pichler-Tempsky.

    Google Scholar 

  • Hall, B. D., & Spiegelman, S. (1961). Sequence complementarity of T2-DNA and T2-specific RNA. Proceedings of the National Academy of Sciences USA,47(2), 137–146.

    Google Scholar 

  • Hansen, E. C. (1883). Recherches sur la physiologie et la morphologie des ferments alcooliques. Résumé Compte Rendus des Travaux du Laboratoire Carlsberg,2(2), 13–47.

    Google Scholar 

  • Hansen, E. C. (1896). Pure cultures of systematically selected yeasts in the fermentation industries. Practical Studies in Fermentation; being Contributions to the Life History of Micro-Organisms (pp. 1–76). London: E. & F. N. Spon.

    Google Scholar 

  • Hassal, A. H. (1850). A microscopic examination of the water supplied to the inhabitants of London and the suburban districts. London: Samuel Highley.

    Google Scholar 

  • Haurowitz, F. (1936). Über die bindung zwischen antigen und praezipitierendem antikörper. Zeitschrift für Physiologische Chemie,245, 23–40.

    Google Scholar 

  • Haurowitz, F. (1937). Antigene, antikörper und immunitaet. Klinische Wochenschrift,16, 257–261.

    Google Scholar 

  • Haurowitz, F. (1939). Chemie der antigene und der antikörperrper. Fortschritte der Allergielehre,1, 19–72.

    Google Scholar 

  • Haurowitz, F. (1978). Mechanism of antigen-induced antibody biosynthesis from antibody precursors, the heavy and light immunoglobulin chains. Proceedings of the National Academy of Sciences USA,75(5), 2434–2438.

    Google Scholar 

  • Hayashi, M., & Spiegelman, S. (1961). The selective synthesis of informational RNA in bacteria. Proceedings of the National Academy of Sciences USA,47(10), 1564–1580.

    Google Scholar 

  • Heidelberger, M., & Kendall, F. E. (1930). Special articles. Science,72(1862), 252–253.

    Google Scholar 

  • Hellman, G. P., & Thompson, F. W. (1975). Physicalism: Ontology, determination, and reduction. Journal of Philosophy,72(17), 551–564.

    Google Scholar 

  • Hempel, C. G. (1966). Philosophy of natural science. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Herzfeld, E., & Klinger, R. (1918). Chemische studien zur physiologie und pathologie, II. ie immunitätstreakreactionen. Biochemische Zeitschrift,85, 1–44.

    Google Scholar 

  • Hesse, W. (1992). Walter and Angelina Hesse—Early contributors to bacteriology. ASM News,58(8), 425–428.

    Google Scholar 

  • Hitchens, A. P., & Leikind, M. C. (1939). The introduction of agar-agar into bacteriology. Journal of Bacteriology,37(5), 485–493.

    Google Scholar 

  • Hoagland, M. (1955). An enzymic mechanism for amino acid activation in animal tissues. Biochimica et Biophysica Acta,16(2), 288–289.

    Google Scholar 

  • Hoagland, M. (1989). Commentary on “Intermediate reactions in protein biosynthesis’ by M. B. Hoagland, P. C. Zamecnik and M. L. Stephenson Biochim. Biophysica Acta 24 (1957) 215–216. Biochimica et Biophysica Acta, 1000(Supplement C), 103–107.

  • Hoagland, M., Keller, E. B., & Zamecnik, P. C. (1956). Enzymatic carboxyl activation of amino acids. Journal of Biological Chemistry,218(1), 345–358.

    Google Scholar 

  • Hoagland, M., Stephenson, M. L., Scott, J. F., Hecht, L. I., & Zamecnik, P. C. (1958). A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry,231(1), 241–257.

    Google Scholar 

  • Hoagland, M., Zamecnik, P. C., & Stephenson, M. L. (1957). Intermediate reactions in protein biosynthesis. Biochimica et Biophysica Acta,24(1), 215–216.

    Google Scholar 

  • Hoffmann, R., Minkin, V. I., & Carpenter, B. K. (1997). Ockham’s Razor and chemistry. International Journal for Philosophy of Chemistry,3, 3–28.

    Google Scholar 

  • Holsinger, K. E. (1981). Comment: The blunting of Occam’s Razor, or to hell with parsimony. Canadian Journal of Zoology,59(1), 144–146.

    Google Scholar 

  • Hooker, S. B., & Boyd, W. C. (1931). A quantitative aspect of the hypothetical incorporation of injected antigen in resulting antibody. Journal of Immunology,21(2), 113–115.

    Google Scholar 

  • Hooker, S. B., & Boyd, W. C. (1932). A quantitative aspect of the hypothetical incorporation of injected antigen in resulting antibody. Journal of Immunology,23(6), 465–479.

    Google Scholar 

  • Huemer, M. (2009). When Is parsimony a virtue? The Philosophical Quarterly,59(235), 216–236.

    Google Scholar 

  • Hultin, T. (1950). Incorporation in vivo of 15N-labeled glycine into liver fractions of newly hatched chicks. Experimental Cell Research,1(3), 376–381.

    Google Scholar 

  • Huxley, T. H. (1870). On the relations of Penicillium, Torula, and Bacterium. Quarterly Journal of Microscopical Science, s210(40), 355–362.

  • Jerne, N. K. (1955). The natural-selection theory of antibody formation. Proceedings of the National Academy of Sciences,41(11), 849–857.

    Google Scholar 

  • Jerne, N. K., & Nordin, A. A. (1963). Plaque formation in agar by single antibody-producing cells. Science,140(3565), 405.

    Google Scholar 

  • Jordan, P. (1940). Heuristische theorie der immunisierungs-und anaphylaxie-erscheinungen. Zeitschrift für Immunitätsforschung und Experimentelle Therapie,97, 330–344.

    Google Scholar 

  • Joy, G. C. (1975). Karl Popper’s view of simplicity in science. Journal of Thought,10(1), 16–23.

    Google Scholar 

  • Judson, H. F. (1996). The eighth day of creation (Expanded ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Kaikkonen, M. U., & Adelman, K. (2018). Emerging roles of non-coding RNA transcription. Trends in Biochemical Sciences,43(9), 654–667.

    Google Scholar 

  • Katahira, J. (2015). Nuclear export of messenger RNA. Genes,6(2), 163–184.

    Google Scholar 

  • Kay, L. E. (1989). Molecular biology and Pauling’s immunochemistry: A neglected dimension. History and Philosophy of Life Sciences,11(2), 211–219.

    Google Scholar 

  • Keller, E. B. (1951). Turnover of proteins of cell fractions of adult rat liver in vivo. Federation Proceedings,10, 206.

    Google Scholar 

  • Kelly, K. T. (2004). Justification as truth-finding efficiency: How Ockham’s Razor works. Minds and Machines,14(4), 485–505.

    Google Scholar 

  • Kelly, K. T. (2007). A new solution to the puzzle of simplicity. Philosophy of Science,74(5), 561–573.

    Google Scholar 

  • Kelly, K. T. (2011). Simplicity, truth, and probability. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Philosophy of statistics (Vol. 7, pp. 983–1024). Amsterdam: North-Holland.

    Google Scholar 

  • Kirk, D. L., & Gruber, H. (2005). Ferdinand Cohn, multi-faceted microbiologist extraordinaire. Protist,156(3), 355–358.

    Google Scholar 

  • Kisselev, L. L., & Buckingham, R. H. (2000). Translational termination comes of age. Trends in Biochemical Sciences,25(11), 561–566.

    Google Scholar 

  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (Vol. 8, pp. 410–505). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Klebs, E. (1872). Beiträge zur Pathologischen Anatomie der Schusswunden nach Beobachtungen in den Kriegslazarethen in Carlsruhe 1870 und 1871. Leipzig: F. C. W. Vogel.

  • Klebs, E. (1873). Beiträge zur kenntniss der micrococcen. Archiv für Experimentelle Pathologie und Pharmakologie,1(1), 31–64.

    Google Scholar 

  • Knorr, A. (1898). Das Tetanusgift und seine beziehungen rum thierischen organismus. Eine experimentelle studie über krankheit und heilung. Münchener Medizinische Wochenschrift, 45, 321–325; 362–367.

  • Koch, R. (1876). Die ätiologie der milzbrand-krankheit, begründet auf die entwicklungsgeschichte des Bacillus anthracis. Cohns Beitrage zur Biologie der Pflanzen,2(2), 277–310.

    Google Scholar 

  • Koch, R. (1878). Untersuchungen über die Aetiologie der Wundinfectionskrankheiten Krankheiten. Leipzig: F.C.W. Vogel.

    Google Scholar 

  • Koch, R. (1881). Zur untersuchung von pathogenen organismen. Mittheilungen aus dem Kaiserlichen Gesundheitsamte,1, 1–48.

    Google Scholar 

  • Koch, R. (1882). Die äetiologie der tuberkulose. Berliner Klinische Wochenschrift,19, 221–230.

    Google Scholar 

  • Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 361(1475), 1929–1940.

  • Kriegel, U. (2013). The epistemological challenge of revisionary metaphysics. Philosophers’ Imprint,13(12), 1–30.

    Google Scholar 

  • Kützing, F. T. (1837). Microscopische untersuchungen über die hefe und essigmutter nebst mehreren andern dazu gehörigen vegetabilischen gebilden. Journal für Praktische Chemie,11, 385–409.

    Google Scholar 

  • Lagerkvist, U. (2003). Pioneers of Microbiology and the Nobel Prize. New Jersey: World Scientific.

    Google Scholar 

  • Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., et al. (2018). The human transcription factors. Cell,172(4), 650–665.

    Google Scholar 

  • Landsteiner, K. (1933). Die Spezifizität der Serologischen Reaktionen. Berlin: Julius Springer.

    Google Scholar 

  • Landsteiner, K. (1936). The specificity of serological reactions. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Landsteiner, K. (1945). The Specificity of Serological Reactions. With a chapter on molecular structure and intermolecular forces by Linus Pauling (2nd ed.). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lankester, E. R. (1873). Memoir: On a peach-colored bacterium-Bacterium rubescens, n. sp. Quarterly Journal of Microscopical Science,13, 408–425.

    Google Scholar 

  • Lankester, E. R. (1876a). Further observations on peach- or red-coloured bacterium—Bacterium rubescence. Quarterly Journal of Microscopical Science,25, 27–40.

    Google Scholar 

  • Lankester, E. R. (1876b). Note on Bacterium rubescens and Clathrocystis roseopersicina. Quarterly Journal of Microscopical Science,26, 278–283.

    Google Scholar 

  • Lankester, E. R. (1885–1886). The pleomorphism of the Schizophyta. Quarterly Journal of Microscopical Science 26, 499–595.

  • Laudan, L., Donovan, A., Laudan, R., Barker, P., Brown, H., Leplin, J., et al. (1986). Scientific change: Philosophical models and historical research. Synthese,69(2), 141–223.

    Google Scholar 

  • Lederberg, J. (1959). Genes and antibodies: Do antigens bear instructions for antibody specificity or do they select cell lines that arise by mutation? Science,129(3364), 1649–1653.

    Google Scholar 

  • Lee, T. I., & Young, R. A. (2013). Transcriptional regulation and Its misregulation in disease. Cell,152(6), 1237–1251.

    Google Scholar 

  • Levine, B. B., & Benacerraf, B. (1965). Genetic control in guinea pigs of immune response to conjugates of haptens and Poly-L-Lysine. Science,147(3657), 517–518.

    Google Scholar 

  • Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.

    Google Scholar 

  • Lister, J. (1873a). A further contribution to the natural istory of bacteria and the germ theory of the fermentative changes. Quarterly Journal of Microscopical Science,13(52), 380–408.

    Google Scholar 

  • Lister, J. (1873b). On the germ theory of putrefaction and other fermentative changes II. Nature,8(194), 232–233.

    Google Scholar 

  • Lister, J. (1873c). On the germ theory of putrefaction and other fermentative changes. Nature,8(195), 212–214.

    Google Scholar 

  • Lister, J. (1875). A contribution to the germ theory of putrefaction and other fermentative changes and to the natural history of torulae and bacteria. Transactions of the Royal Society of Edinburgh,27(3), 313–344.

    Google Scholar 

  • Lister, J. (1878). On the lactic fermentation and its bearing on pathology. Transactions of the Pathological Society of London,29, 425–467.

    Google Scholar 

  • Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences USA,113(21), 5970–5975.

    Google Scholar 

  • Locke, A. L., Main, E. R., & Hirsch, E. F. (1926). Abst. Archives of Pathology,2, 437.

    Google Scholar 

  • Löeffler, F. (1887). Vorlesungen über die geschichtliche Entwickelung der Lehre von den Bacterien: Für Aerzte und Studirende. Leipzig: F. C. W. Vogel.

    Google Scholar 

  • Löffler, F. A. J., & Schütz, W. (1882). Einige bemerkungen betreffend die entdeckung des rotzbacillus. Deutsche Medizinische Wochenschrift, 8, 707.

    Google Scholar 

  • Lotsy, J. P. (1907). Vorträge über Botanische Stammesgeschichte. Jena: G. Fischer.

    Google Scholar 

  • Lovering, R. C., Camon, E. B., Blake, J. A., & Diehl, A. D. (2008). Access to immunology through the Gene Ontology. Immunology,125(2), 154–160.

    Google Scholar 

  • Lycan, W. G. (1975). Occam’s razor. Metaphilosophy,6(3–4), 223–237.

    Google Scholar 

  • Manwaring, W. H. (1926). The basic concepts of immunity. Journal of Immunology,12(3), 177–184.

    Google Scholar 

  • Manwaring, W. H. (1930). Renaissance of pre-Ehrlich immunology. Journal of Immunology,19(2), 155–163.

    Google Scholar 

  • McDevitt, H. O., & Sela, M. (1965). Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. Journal of Experimental Medicine, 122(3), 517–531.

  • McKeon, R. (Ed.). (1941). The basic works of aristotle. New York: Random House.

    Google Scholar 

  • Merlino, C. P. (1924). Bartolomeo Bizio’s letter to the eminent priest Angelo Bellini, concerning the phenomenon of the red-colored polenta. Journal of Bacteriology,9(6), 527–543.

    Google Scholar 

  • Migula, W. (1897). System der Bakterien. Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bakterien (Vol. 2). Jena: Gustav Fischer.

  • Mudd, S. (1932). A hypothetical mechanism of antibody formation. Journal of Immunology,23(6), 423–427.

    Google Scholar 

  • Müller, O. F. (1786). Animalcula Infusoria Fluviatilia et Marina quae Detexit, Systematice, Descripsit et ad Vivum Delineare Curavit. Hauniae: Nicolas Möller et Filius.

  • Nägeli, C. (1849). Gattungen Einzelliger Algen, Physiologisch und Systematisch Bearbeitet (Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften). Zürich: Friedrich Schulthess.

    Google Scholar 

  • Nägeli, C., & Loew, O. (1878). Ueber die chemische zusammensetzung der hefe. Justus Liebigs Annalen der Chemie,193(2), 403–428.

    Google Scholar 

  • Naor, D., & Sulitzneau, D. (1967). Binding of radioiodinated bovine serum albumin to mouse spleen cells. Nature,214(5089), 687–688.

    Google Scholar 

  • Nolan, D. (1997). Quantitative parsimony. The British Journal for the Philosophy of Science,48(3), 329–343.

    Google Scholar 

  • Noller, H. F., Hoffarth, V., & Zimniak, L. (1992). Unusual resistance of peptidyl transferase to protein extraction procedures. Science,256(5062), 1416–1419.

    Google Scholar 

  • Nossal, G. J. (1958). Antibody production by single cells. British Journal of Experimental Pathology,39(5), 544–551.

    Google Scholar 

  • Nossal, G. J., & Lederberg, J. (1958). Antibody production by single cells. Nature,181(4620), 1419–1420.

    Google Scholar 

  • Ogunseitan, O. (2005). Microbial diversity: Form and function in prokaryotes. Malden, MA: Blackwell.

    Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the Earth sciences. Science,263(5147), 641–646.

    Google Scholar 

  • Pardee, A. B., Jacob, F., & Monod, J. (1959). The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli. Journal of Molecular Biology, 1(2), 165–178.

  • Parfit, D. (1998). The puzzle of reality: Why does the universe exist? In P. ValnInwagen & D. Zimmerman (Eds.), Metaphysics: The big questions. Malden, MA: Blackwell.

    Google Scholar 

  • Pasteur, L. (1857a). Mémoire sur la fermentation alcoolique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences,45, 1032–1036.

    Google Scholar 

  • Pasteur, L. (1857b). Mémoire sur la fermentation appelée lactique Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences,45, 913–916.

    Google Scholar 

  • Pasteur, L. (1861). Expériences et vues nouvelles sur la nature des fermentations. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences,52, 1260–1264.

    Google Scholar 

  • Pasteur, L., & Joubert, J. (1877). Étude sur la maladie charbonneuse. Comptes rendus de l’Académie des sciences,84, 900–906.

    Google Scholar 

  • Paul, L. A. (2012). Metaphysics as modeling: The handmaiden’s tale. Philosophical Studies,160(1), 1–29.

    Google Scholar 

  • Pauling, L. (1940). A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society,62(10), 2643–2657.

    Google Scholar 

  • Pauling, L. (1945). Molecular structure and intermolecular forces. In The specificity of serological reactions by Karl Landsteiner (2nd ed., pp. 275–293). Cambridge, MA: Harvard University Press.

  • Pauling, L., & Campbell, D. H. (1942a). The manufacturing of antibodies in vitro. Journal of Experimental Medicine,76(2), 211–220.

    Google Scholar 

  • Pauling, L., & Campbell, D. H. (1942b). The production of antibodies in vitro. Science,95(2469), 440–441.

    Google Scholar 

  • Pauling, L., Campbell, D. H., & Pressman, D. (1943). The nature of the forces between antigen and antibody and of the precipitation reaction. Physiological Reviews,23(3), 203–219.

    Google Scholar 

  • Pauling, L., & Delbrück, M. (1940). The nature of the intermolecular forces operative in biological processes. Science,92(2378), 77–79.

    Google Scholar 

  • Pederson, T. (2005). 50 years ago protein synthesis met molecular biology: The discoveries of amino acid activation and transfer RNA. FASEB Journal,19(12), 1583–1584.

    Google Scholar 

  • Perty, M. (1852). Zur Kenntniss Kleinster Lebensformen: Nach Bau, Funktionen, Systematik, mit Specialverzeichniss der in der Schweiz Beobachteten. Bern: Jent & Reinert.

    Google Scholar 

  • Petri, R. J. (1887). Eine kleine modification des Koch’schen plattenverfahrens. Centralblatt für Bakteriologie und Parasitenkunde,1, 279–280.

    Google Scholar 

  • Popper, K. (1963). Conjectures and refutations. New York and London: Basic Books.

    Google Scholar 

  • Popper, K. (2002). The logic of scientific discovery. London: Routledge Classics.

    Google Scholar 

  • Quine, W. V. O. (1963). On simple theories of a complex world. Synthese,15(1), 103–106.

    Google Scholar 

  • RajBhandary, U. L., & Kohrer, C. (2006). Early days of tRNA research: Discovery, function, purification and sequence analysis. Journal of Biosciences,31(4), 439–451.

    Google Scholar 

  • Ramanathan, A., Robb, G. B., & Chan, S.-H. (2016). mRNA capping: Biological functions and applications. Nucleic Acids Research,44(16), 7511–7526.

    Google Scholar 

  • Rheinberger, H. J. (1992a). Experiment, difference, and writing: I. Tracing protein synthesis. Studies in History and Philosophy of Science Part A, 23(2), 305–331.

  • Rheinberger, H. J. (1992b). Experiment, difference, and writing: II. The laboratory production of transfer RNA. Studies in History and Philosophy of Science Part A, 23(3), 389–422.

  • Rheinberger, H. J. (1993). Experiment and orientation: Early systems of in vitro protein synthesis. Journal of the History of Biology,26(3), 443–471.

    Google Scholar 

  • Rheinberger, H. J. (1995). From microsomes to ribosomes: “strategies” of “representation”. Journal of the History of Biology,28(1), 49–89.

    Google Scholar 

  • Rheinberger, H. J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford: Stanford University Press.

    Google Scholar 

  • Rheinberger, H. J. (2006). A history of protein biosynthesis and ribosome research. In K. H. Nierhaus & D. Wilson (Eds.), Protein synthesis and ribosome structure: Translating the genome (pp. 1–51). Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Rheinberger, H. J. (2016). A brief history of protein biosynthesis and ribosome research. Lindau: Paper presented at the Lindau Nobel Laureate Meeting.

    Google Scholar 

  • Riesch, H. (2010). Simple or simplistic? Scientists’ views on Occam’s Razor. Theoria,67(1), 75–90.

    Google Scholar 

  • Riley, M., & Pardee, A. B. (1962). beta-Galactosidase formation following decay of 32P in Escherichia coli zygotes. Journal of Molecular Biology,5(1), 63–75.

    Google Scholar 

  • Rodnina, M. V., Beringer, M., & Wintermeyer, W. (2007). How ribosomes make peptide bonds. Trends in Biochemical Sciences,32(1), 20–26.

    Google Scholar 

  • Rosselló-Móra, R., & Amann, R. (2015). Past and future species definitions for Bacteria and Archaea. Systematic and Applied Microbiology,38(4), 209–216.

    Google Scholar 

  • Roux, E., & Vaillard, L. (1893). Contribution a l’etude du tetanus. Prevention et traitement par le sérum antitoxique. Annales de l’Institut Pasteur,7, 66–140.

    Google Scholar 

  • Russell, B. (1914). Our knowledge of the external world. London: George Allen & Unwin.

    Google Scholar 

  • Rutledge, R. H. (1995). Theodor Billroth: A century later. Surgery,118(1), 36–43.

    Google Scholar 

  • Sakula, A. (1982). Baroness Burdett-Coutts’ garden party: The International Medical Congress, London, 1881. Medical History,26(2), 183–190.

    Google Scholar 

  • Sandle, T. (2011). History and development of microbiological culture media. The Journal (Institute of Science and Technology), https://www.researchgate.net/publication/301523075_History_and_development_of_microbiological_culture_media, 10–14.

  • Sanger, F. (1949). The terminal peptides of insulin. Biochemical Journal,45(5), 563–574.

    Google Scholar 

  • Sanger, F. (1952). The arrangement of amino acids in proteins. Advances in Protein Chemistry,7, 1–66.

    Google Scholar 

  • Sanger, F., & Tuppy, H. (1951). The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal, 49(4), 463–481.

  • Sathiamurthy, M., Peters, B., Bui, H.-H., Sidney, J., Mokili, J., Wilson, S. S., et al. (2005). An ontology for immune epitopes: Application to the design of a broad scope database of immune reactivities. Immunome Research,1(1), 1–10.

    Google Scholar 

  • Schaffer, J. (2015). What not to multiply without necessity. Australasian Journal of Philosophy,93(4), 644–664.

    Google Scholar 

  • Schaffner, K. F. (1992). Theory change in immunology part II: The clonal selection theory. Theoretical Medicine,13(2), 191–216.

    Google Scholar 

  • Schloss, P. D., & Handelsman, J. (2004). Status of the microbial census. Microbiology and Molecular Biology Reviews,68(4), 686–691.

    Google Scholar 

  • Schroeter, J. (1872). Über einige durch bacterien gebildete pigmente. Beiträge zur Biologie der Pflanzen,1(2), 109–126.

    Google Scholar 

  • Schulte, O. (1999). Means-ends epistemology. British Journal for the Philosophy of Science,50(1), 1–31.

    Google Scholar 

  • Schweet, R. S., & Owen, R. D. (1957). Concepts of protein synthesis in relation to antibody formation. Journal of Cellular and Comparative Physiology,50(Suppl 1), 199–228.

    Google Scholar 

  • Scorzato, L. (2013). On the role of simplicity in science. Synthese,190(14), 2867–2895.

    Google Scholar 

  • Sette, V. (1824) Memoria storico-naturale sull’arrossimento straordinario di alcune sostanze alimentose osservato nella provincia di Padova l’anno MDCCCXIX (A natural history memoir which discusses an extraordinary reddening of certain food substances. Observed in the Province of Paduain 1819). Letta all’Ateneo di Treviso nella sera 28 Aprile 1820. (Read at the Atheneum of Treviso on the evening of April 28, 1820.) Alvisopoli, Venezia, 63 pp.

  • Shapiro, B. J., Leducq, J.-B., & Mallet, J. (2016). What is speciation? PLoS Genetics,12(3), e1005860.

    Google Scholar 

  • Shi, Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology,18(11), 655–670.

    Google Scholar 

  • Sider, T. (2013). Against parthood. In K. Bennett & D. W. Zimmerman (Eds.), Oxford studies in metaphysics (Vol. 8, pp. 237–293). Oxford: Oxford University Press.

    Google Scholar 

  • Siekevitz, P. (1952). Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. Journal of Biological Chemistry,195(2), 549–565.

    Google Scholar 

  • Siekevitz, P., & Zamecnik, P. C. (1951). In vitro incorporation of 1-C14-DL-alanine into proteins of rat liver granular fractions. Federation Proceedings,10, 246–247.

    Google Scholar 

  • Siekevitz, P., & Zamecnik, P. C. (1981). Ribosomes and protein synthesis. Journal of Cell Biology,91(3), 53s–65s.

    Google Scholar 

  • Silverstein, A. M. (1985). A history of theories of antibody formation. Cellular Immunology,91(1), 263–283.

    Google Scholar 

  • Silverstein, A. M. (1999). Paul Ehrlich’s passion: The origins of his receptor immunology. Cellular Immunology,194(2), 213–221.

    Google Scholar 

  • Silverstein, A. M. (2002). Paul Ehrlich’s receptor immunology: The magnificent obsession. San Diego and London: Academic Press.

    Google Scholar 

  • Silverstein, A. M. (2009). A history of immunology (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Singh, M. K., Srivastava, S., Raghava, G. P. S., & Varshney, G. C. (2006). HaptenDB: A comprehensive database of haptens, carrier proteins and anti-hapten antibodies. Bioinformatics,22(2), 253–255.

    Google Scholar 

  • Smart, J. J. C. (1959). Sensations and brain processes. The Philosophical Review,68(2), 141–156.

    Google Scholar 

  • Smart, J. J. C. (1984). Ockham’s Razor. In J. H. Fetzer (Ed.), Principles of philosophical reasoning (pp. 118–218). Lanham, MD: Rowman & Allanheld.

    Google Scholar 

  • Sober, E. (1981). The principle of parsimony. The British Journal for the Philosophy of Science,32(2), 145–156.

    Google Scholar 

  • Sober, E. (1983). Parsimony in systematics: Philosophical issues. Annual Review of Ecology and Systematics,14, 335–357.

    Google Scholar 

  • Sober, E. (1985). A likelihood justification of parsimony. Cladistics,1(3), 209–233.

    Google Scholar 

  • Sober, E. (1988). The philosophical problem of simplicity. Reconstructing the past: Parsimony, evolution, and inference (pp. 37–69). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sober, E. (1990). Explanation in biology: Let’s razor Ockham’s Razor. Royal Institute of Philosophy Supplement,27, 73–93.

    Google Scholar 

  • Sober, E. (2002). What is the problem of simplicity? In A. Zellner, H. Kuezenkamp, & M. McAleer (Eds.), Simplicity, inference, and modelling (pp. 13–32). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sober, E. (2006). Parsimony. In J. Pfeifer & S. Sarkar (Eds.), The philosophy of science: An encyclopedia (Vol. 2, pp. 531–538). New York: Routledge.

    Google Scholar 

  • Sober, E. (2015). Ockham’s Razors: A user’s manual. Cambridge: Cambridge University Press.

    Google Scholar 

  • Söderqvist, T. (1994). Darwinian overtones: Niels K. Jerne and the origin of the selection theory of antibody formation. Journal of the History of Biology, 27(3), 481–529.

  • Sokal, A., & Bricmont, J. (2001). Science and sociology of science: Beyond war and peace. In J. Labinger & H. Collins (Eds.), The one culture? A conversation about science. Chicago: University of Chicago Press.

    Google Scholar 

  • Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell,136(4), 731–745.

    Google Scholar 

  • Spirin, A. S. (1999). Transfer RNA and aminoacyl-tRNA synthetases. In Ribosomes (pp. 23–45). Boston, MA: Springer.

  • Steel, M., & Penny, D. (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution,17(6), 839–850.

    Google Scholar 

  • Swinburne, R. (1997). Simplicity as evidence of truth (aquinas lecture). Milwaukee: Marquette University Press.

  • Swinburne, R. (2000). Discussion. Reply to Grünbaum. The British Journal for the Philosophy of Science, 51(3), 481–485.

  • Takemata, N., & Ohta, K. (2017). Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment. RNA Biology,14(1), 1–5.

    Google Scholar 

  • Tallant, J. (2013). Quantitative parsimony and the metaphysics of time: Motivating presentism. Philosophy and Phenomenological Research,87(3), 688–705.

    Google Scholar 

  • Talmage, D. W. (1957). Allergy and immunology. Annual Review of Medicine,8, 239–256.

    Google Scholar 

  • Tauber, A. I., & Podolsky, S. H. (1997). The generation of diversity: Clonal selection theory and the rise of molecular immunology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Thorburn, W. M. (1918). The myth of Occam’s razor. Mind,27(3), 345–353.

    Google Scholar 

  • Topley, W. W. C. (1930). The rôle of the spleen in the production of antibodies. The Journal of Pathology and Bacteriology,33(2), 339–351.

    Google Scholar 

  • Tulasne, L. R. (1851). Note sur l’appareil reprodacteur dans les lichens et les champignons. Comptes Rendus de l’Académie des Sciences,32(427–430), 470–475.

    Google Scholar 

  • Turpin, P. J. F. (1838). Mémoire sur la cause et les effets de la fermentation alcoolique et acéteuse. Comptes Rendus de l’Académie des Sciences,7, 369–402.

    Google Scholar 

  • Ullmann, A. (2007). Pasteur-Koch: Distinctive ways of thinking about infectious diseases Microbe, 2(8), 383–387.

  • Villar, D., Flicek, P., & Odom, D. T. (2014). Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nature Reviews Genetics,15(4), 221–233.

    Google Scholar 

  • Vogel, J. (1990). Cartesian skepticism and inference to the best explanation. The Journal of Philosophy,87(11), 658–666.

    Google Scholar 

  • Volkin, E. (1960). The function of RNA in T2-infected bacteria. Proceedings of the National Academy of Sciences USA,46(10), 1336–1349.

    Google Scholar 

  • Volkin, E., & Astrachan, L. (1957). RNA metabolism in T2-infected Escherichia coli. In W. D. McElroy, and Glass, B. (Ed.), A symposium on the chemical basis of heredity (pp. 686–695). Baltimore, MD: The Johns Hopkins Press.

  • Volkin, E., Astrachan, L., & Countryman, J. L. (1958). Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology,6(2), 545–555.

    Google Scholar 

  • von Behring, E. (1890). Untersuchungen uber das zustandekommen der Diphtherie-Immunität and der Tetanus-Immunitat bei thieren. Deutsche Medizinische Wochenschrift,16, 1143–1145.

    Google Scholar 

  • von Behring, E., & Kitasato, S. (1890). Über das zustandekommen der Diphtherie-Immunitat and der Tetanus-Immunität bei thieren. Deutsche Medizinische Wochenschrift,16, 1113–1114.

    Google Scholar 

  • Walsh, D. (1979). Occam’s Razor: A principle of intellectual elegance. American Philosophical Quarterly,16(3), 241–244.

    Google Scholar 

  • Wan, R., Bai, R., & Shi, Y. (2019). Molecular choreography of pre-mRNA splicing by the spliceosome. Current Opinion in Structural Biology,59, 124–133.

    Google Scholar 

  • Ward, H. M. (1888). Anton De Bary. Nature,37(952), 297–299.

    Google Scholar 

  • Watson, J. D. (2001). Genes, girls, and Gamow: After the double helix. New York: Vintage Books.

    Google Scholar 

  • Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature,171(4356), 737–738.

    Google Scholar 

  • Webb, G. I. (1996). Further experimental evidence against the utility of Occam’s Razor. Journal of Artificaial Intelligence Research,4, 397–417.

    Google Scholar 

  • Weigert, C. (1896). Neue fragestellungen in der pathologischen anatomie. Verhandlungen der Gesellschaft deutscher Naturforscher und Ärzte,68(1), 121–139.

    Google Scholar 

  • Wilkinson, M. E., Charenton, C., & Nagai, K. (2020). RNA Splicing by the spliceosome. Annual Review of Biochemistry, 89(1), 1–30.

  • Willard, M. B. (2014). Against simplicity. Philosophical Studies,167(1), 165–181.

    Google Scholar 

  • Yang, Z., & Rannala, B. (2012). Molecular phylogenetics: Principles and practice. Nature Reviews Genetics,13(5), 303–314.

    Google Scholar 

  • Zamecnik, P. C. (1960). Historical and current aspects of the problem of protein synthesis. In The harvey lectures: 19581959 (Vol. 54, pp. 250–281). New York: Academic Press.

  • Zamecnik, P. C. (1979). Historical aspects of protein synthesis. Annals of the New York Academy of Sciences,325(1), 269–302.

    Google Scholar 

  • Zamecnik, P. C. (1984). The machinery of protein synthesis. Trends in Biochemical Sciences,9(11), 464–466.

    Google Scholar 

  • Zamecnik, P. C., & Keller, E. B. (1954). Relation between phosphate energy donors and incorporation of labeled amino acids into proteins. Journal of Biological Chemistry,209(1), 337–354.

    Google Scholar 

  • Zamecnik, P. C., Stephenson, M. L., & Hecht, L. I. (1958). Intermediate reactions in amino acid incorporation. Proceedings of the National Academy of Sciences,44(2), 73–78.

    Google Scholar 

  • Zopf, W. (1885). Die Spaltpilze: Nach dem neuesten Standpunkte bearbeitet (3rd ed.). Breslau: von Eduard Trewendt.

    Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Avram Hershko and Iris Fry for their critical reading of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fry.

Ethics declarations

Conflict of interest

Not applicable.

Availability of data and materials

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fry, M. Ontologically simple theories do not indicate the true nature of complex biological systems: three test cases. HPLS 42, 17 (2020). https://doi.org/10.1007/s40656-020-00310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-020-00310-5

Keywords

Navigation