Skip to main content
Log in

Characterization of macrophage phenotype, redox, and purinergic response upon chronic treatment with methionine and methionine sulfoxide in mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35–1.2 g/kg body weight and 0.09–0.3 g/kg body weight, respectively, from the 10th–38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  • Allen J, Power B, Abedin A, Purcell O, Knerr I, Monavari A (2019) Plasma methionine concentrations and incidence of hypermethioninemic encephalopathy during infancy in a large cohort of 36 patients with classical homocystinuria in the Republic of Ireland. JIMD Rep 47:41–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonioli L, Csóka B, Fornai M, Colucci R, Kokai E, Blandizzi C, Haskó G (2014) Adenosine and inflammation: what's new on the horizon? Drug Discov Today 19:1051–1068

    Article  CAS  PubMed  Google Scholar 

  • Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl 422:43–52

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Catorce MN, Gevorkian G (2016) LPS-induced Murine Neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14:155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  • Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235

    Article  CAS  PubMed  Google Scholar 

  • Costa MZ, Da Silva TM, Flores NP, Schmitz F, Scherer EB, Viau CM, Saffi J, Barschak AG, Wyse AT, Spanevello RM, Stefanello FM (2013) Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol Cell Biochem 384:21–28

    Article  CAS  PubMed  Google Scholar 

  • Dosch M, Gerber J, Jebbawi F, Beldi G (2018) Mechanisms of ATP release by inflammatory cells. Int J Mol Sci 19:1222

    Article  PubMed Central  CAS  Google Scholar 

  • Dosch M, Zindel J, Jebbawi F, Melin N, Sanchez-Taltavull D, Stroka D, Candinas D, Beldi G (2019) Connexin-43-dependent ATP release mediates macrophage activation during sepsis. Elife 8:e42670

    Article  PubMed  PubMed Central  Google Scholar 

  • Dos Santos LM, Da Silva TM, Azambuja JH, Ramos PT, Oliveira PS, Da Silveira EF, Pedra NS, Galdino K, Do Couto CAT, Soares MSP, Tavares RG, Spanevello RM, Stefanello FM, Braganhol E (2017) Methionine and methionine sulfoxide treatment induces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters. Mol Cell Biochem 424:69–78

    Article  PubMed  CAS  Google Scholar 

  • Gaull GE, Tallan HH (1974) Methionine adenosyltransferase deficiency: new enzymatic defect associated with hypermethioninemia. Science 186:59–60

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants–quo vadis? Trends Pharmacol Sci 32:125–130

    Article  CAS  PubMed  Google Scholar 

  • Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph MH, Marsden CA (1986) Amino acids and small peptides. HPLC of small peptides. IRL Press, Oxford 13–27.

  • Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CQ, Barshop BA, Feigenbaum A, Khanna PC (2018a) Brain magnetic resonance imaging findings in poorly controlled homocystinuria. J Radiol Case Rep 12:1–8

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang L, Liu H, Muyayalo KP, Huang X, Mor G, Liao A (2018b) Galectin-9 alleviates LPS-induced preeclampsia-like impairment in rats via switching decidual macrophage polarization to M2 subtype. Front Immunol 9:3142

    Article  CAS  PubMed  Google Scholar 

  • Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. J Biol Chem 395:203–230

    Article  CAS  Google Scholar 

  • Luo S, Levine RL (2009) Methionine in proteins defends against oxidative stress. FASEB J 23:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maclean KN, Jiang H, Greiner LS, Allen RH, Stabler SP (2012) Long-term betaine therapy in a murine model of cystathionine beta-synthase deficient homocystinuria: decreased efficacy over time reveals a significant threshold effect between elevated homocysteine and thrombotic risk. Mol Genet Metab 105:395–403

    Article  CAS  PubMed  Google Scholar 

  • Martins E, Marcao A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L (2012) Methionine adenosyltransferase I/III deficiency in Portugal: high frequency of a dominantly inherited form in a small area of Douro High Lands. JIMD Rep 6:107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet Part C (Seminars in Medical Genetics) 157:3–32

    Article  CAS  Google Scholar 

  • Mudd SH, Jenden DJ, Capdevila A, Roch M, Levy HL, Wagner C (2000) Isolated hypermethioninemia: measurements of S-adenosylmethionine and choline. Metabolism 49:1542–1547

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001, vol. 2, pp 1279–1327.

  • Mudd SH, Tangerman A, Stabler SP, Allen RH, Wagner C, Zeisel SH, Levy HL (2003) Maternal methionine adenosyltransferase I/III deficiency: reproductive outcomes in a woman with four pregnancies. JIMD 26:443–458

    CAS  PubMed  Google Scholar 

  • Nashabat M, Al-Khenaizan S, Alfadhel M (2018) Methionine adenosyltransferase I/III deficiency: beyond the central nervous system manifestations. Ther Clin Risk Manag 14:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signalling 2:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweinberger BM, Wyse AT (2016) Mechanistic basis of hypermethioninemia Amino acids 48:2479–2489

    Article  CAS  PubMed  Google Scholar 

  • Schweinberger BM, Schwieder L, Scherer E, Sitta A, Vargas CR, Wyse AT (2014) Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+, K+-ATPase/Mg 2+-ATPase activity and oxidative status of the offspring. Metab Brain Dis 29:153–160

    Article  CAS  PubMed  Google Scholar 

  • Schweinberger BM, Turcatel E, Rodrigues AF, Wyse AT (2015) Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring. Int J Exp Pathol 96:277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweinberger BM, Rodrigues AF, Turcatel E, Pierozan P, Pettenuzzo LF, Grings M, Scaini G, Parisi MM, Leipnitz G, Streck EL, Barbé-Tuana FM, Wyse ATS (2018) Maternal hypermethioninemia affects neurons number, neurotrophins levels, energy metabolism, and Na+, K+-ATPase expression/content in brain of rat offspring. Mol Neurobiol 55:980–988

    Article  CAS  PubMed  Google Scholar 

  • Soares MSP, Oliveira PS, Debom GN, Da Silveira BM, Polachini CR, Baldissarelli J, Morsch VM, Schetinger MRC, Tavares RG, Stefanello FM, Spanevello RM (2017a) Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids 49:129–138

    Article  CAS  PubMed  Google Scholar 

  • Soares MSP, Viau CM, Saffi J, Costa MZ, Da Silva TM, Oliveira PS, Azambuja JH, Barschak AG, Braganhol E, Wyse ATS, Stefanello FM, Spanevello RM (2017b) Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. Metab Brain Dis 32:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Soares MSP, Costa MZ, da Silva TM, Gazal M, do Couto CAT, Debom GN, Rodrigues R, Azambuja JH, Casali EA, Moritz CEJ, Duarte MF, Braganhol E, Stefanello FM, Spanevello RM (2018) Methionine and/or methionine sulfoxide alter ectoenzymes activities in lymphocytes and inflammatory parameters in serum from young rats: acute and chronic effects. Cell Biochem Biophys 76:243–253

    Article  CAS  PubMed  Google Scholar 

  • Soares MSP, Mattos BS, Ávila AA, Spohr L, Pedra NS, Teixeira FC, Bona NP, Oliveira PS, Stefanello FM, Spanevello RM (2019) High levels of methionine and methionine sulfoxide: impact on adenine nucleotide hydrolysis and redox status in platelets and serum of young rats. J Cell Biochem 120:2289–2303

    Article  CAS  Google Scholar 

  • Stefanello FM, Chiarani F, Kurek AG, Wannmacher CM, Wajner M, Wyse AT (2005) Methionine alters Na+, K+-ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Matté C, Scherer EB, Wannmacher CM, Wajner M, Wyse AT (2007a) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Scherer EB, Kurek AG, Mattos CB, Wyse AT (2007b) Effect of hypermethioninemia on some parameters of oxidative stress and on Na+, K+-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–182

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Matté C, Pederzolli CD, Kolling J, Mescka CP, Lamers ML, Assis AM, Perry ML, Santos MF, Dutra-Filho CS, Wyse AT (2009) Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie 91:961–968

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Ferreira AG, Pereira TC, da Cunha MJ, Bonan CD, Bogo MR, Wyse AT (2011) Acute and chronic hypermethioninemia alter Na+, K+-ATPase activity in rat hippocampus: prevention by antioxidants. Int J Dev Neurosci 29:483–488

    Article  CAS  PubMed  Google Scholar 

  • Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Kodera Y, Saito T, Fujimoto K, Momozono A, Hayashi A, Kamata Y, Shichiri M (2016) Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress. Sci Rep 6:38299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varol C, Mildner A, Jung S (2015) Macrophages: development and tissue specialization. Annu Rev Immunol 33:643–675

    Article  CAS  PubMed  Google Scholar 

  • Yoon SY, Hong GH, Kwon HS, Park S, Park SY, Shin B, Kim TB, Moon HB, Cho YS (2016) S-Adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress. Exp Mol Med 48:236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Universal Processo 454262/2014-0) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS). This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES)—Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francieli M. Stefanello.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All animal procedures were approved by the Ethics Committee of Animal Experimentation from the Federal University of Pelotas (protocol under project number: CEEA 9221-2013). The use of the animals was in accordance with the Brazilian Guidelines for the Care and Use of Animals in Scientific Research Activities (DBCA), National Council of Control of Animal Experimentation (CONCEA) and with the NIH Guide for Care and Use of Laboratory Animals.

Additional information

Handling Editor: J. Marshal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschi, T.S., Soares, M.S.P., Pedra, N.S. et al. Characterization of macrophage phenotype, redox, and purinergic response upon chronic treatment with methionine and methionine sulfoxide in mice. Amino Acids 52, 629–638 (2020). https://doi.org/10.1007/s00726-020-02841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02841-4

Keywords

Navigation