Skip to main content

Advertisement

Log in

Comparison of third-generation sequencing approaches to identify viral pathogens under public health emergency conditions

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The capability of high-throughput sequencing (HTS) for detection of known and unknown viruses timely makes it a powerful tool for public health emergency response. Third-generation sequencing (TGS) offers advantages in speed and length of detection over second-generation sequencing (SGS). Here, we presented the end-to-end workflows for both Oxford Nanopore MinION and Pacbio Sequel on a viral disease emergency event, along with Ion Torrent PGM as a reference. A specific pipeline for comparative analysis on viral genomes recovered by each platform was assembled, given the high errors of base-calling for TGS platforms. All the three platforms successfully identified and recovered at least 85% Norovirus GII genomes. Oxford Nanopore MinION spent the least sample-to-answer turnaround time with relatively low but enough accuracy for taxonomy classification. Pacbio Sequel recovered the most accurate viral genome, while spending the longest time. Overall, Nanopore metagenomics can rapidly characterize viruses, and Pacbio Sequel can accurately recover viruses. This study provides a framework for designing the appropriate experiments that are likely to lead to accurate and rapid virus emergency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The consensus sequences of Norovirus GII recovered by sequencing platforms are publicly available through the Supplementary material.

References

  1. Chen Z, Liu L, Lv Y, Zhang W, Li J, Zhang Y, Di T, Zhang S, Liu J, Li J, Qu J, Hua W, Li C, Wang P, Zhang Q, Xu Y, Jiang R, Wang Q, Chen L, Wang S, Pang X, Liang M, Ma X, Li X, Wang Q, Zhang F, Li D (2016) A fatal yellow fever virus infection in China: description and lessons. Emerg Microbes Infect 5(7):e69. https://doi.org/10.1038/emi.2016.89

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hui DS, Perlman S, Zumla A (2015) Spread of MERS to South Korea and China. Lancet Respir Med 3(7):509–510. https://doi.org/10.1016/S2213-2600(15)00238-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lam TT, Zhou B, Wang J, Chai Y, Shen Y, Chen X, Ma C, Hong W, Chen Y, Zhang Y, Duan L, Chen P, Jiang J, Zhang Y, Li L, Poon LL, Webby RJ, Smith DK, Leung GM, Peiris JS, Holmes EC, Guan Y, Zhu H (2015) Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 522(7554):102–105. https://doi.org/10.1038/nature14348

    Article  CAS  PubMed  Google Scholar 

  4. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, Carcelen AC, Ott CT, Sheffield JS, Ferguson NM, Cummings DA, Metcalf CJ, Rodriguez-Barraquer I (2016) Assessing the global threat from Zika virus. Science. https://doi.org/10.1126/science.aaf8160

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haug CJ, Kieny MP, Murgue B (2016) The Zika Challenge. N Engl J Med 374(19):1801–1803. https://doi.org/10.1056/NEJMp1603734

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang YP, Boerwinkle E, Fu YX (2004) Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 4:21. https://doi.org/10.1186/1471-2148-4-21

    Article  PubMed  PubMed Central  Google Scholar 

  7. Donnelly CA, Fisher MC, Fraser C, Ghani AC, Riley S, Ferguson NM, Anderson RM (2004) Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect Dis 4(11):672–683. https://doi.org/10.1016/S1473-3099(04)01173-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gardner SN, Kuczmarski TA, Vitalis EA, Slezak TR (2003) Limitations of TaqMan PCR for detecting divergent viral pathogens illustrated by hepatitis A, B, C, and E viruses and human immunodeficiency virus. J Clin Microbiol 41(6):2417–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844. https://doi.org/10.1038/nbt.3935

    Article  CAS  PubMed  Google Scholar 

  10. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  11. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860. https://doi.org/10.1093/nar/gku555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marx V (2013) Next-generation sequencing: the genome jigsaw. Nature 501(7466):263–268. https://doi.org/10.1038/501261a

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Zhang C, Li B, Li Y, He XZ, Li A, Wu W, Duan SX, Qiu FZ, Wang J, Shen XX, Yang MJ, Li X, Ma XJ (2018) VSITA, an Improved Approach of Target Amplification in the Identification of Viral Pathogens. Biomed Environ Sci 31(4):272–279. https://doi.org/10.3967/bes2018.035

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Wang H, Nie K, Zhang C, Zhang Y, Wang J, Niu P, Ma X (2016) VIP: an integrated pipeline for metagenomics of virus identification and discovery. Sci Rep 6:23774. https://doi.org/10.1038/srep23774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu R, Wang Y, Wang W, Nie K, Zhao Y, Su J, Deng Y, Zhou W, Li Y, Wang H, Wang W, Ke C, Ma X, Wu G, Tan W (2015) Complete genome sequence of middle east respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China. Genome Announc. https://doi.org/10.1128/genomeA.00818-15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Wu W, Zhao X, Xiong Y, Zhang S, Liu X, Qu J, Li J, Nei K, Liang M, Shu Y, Hu G, Ma X, Li D (2016) Complete genome sequence of zika virus from the first imported case in mainland China. Genome Announc. https://doi.org/10.1128/genomeA.00291-16

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lui W-Y, Yuen C-K, Li C, Wong WM, Lui P-Y, Lin C-H, Chan K-H, Zhao H, Chen H, To KK (2019) SMRT sequencing revealed the diversity and characteristics of defective interfering RNAs in influenza A (H7N9) virus infection. Emerg Microbes Infect 8(1):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang C, Sam V, Du S, Le T, Fletcher A, Lau W, Meyer K, Asaki E, Huang DW, Johnson C (2018) Towards personalized medicine: an improved de novo assembly procedure for early detection of drug resistant hiv minor quasispecies in patient samples. Bioinformation 14(8):449

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grubaugh ND, Ladner JT, Kraemer MU, Dudas G, Tan AL, Gangavarapu K, Wiley MR, White S, Thézé J, Magnani DM (2017) Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546(7658):401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530(7589):228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, Thielebein A, Hinzmann J, Oestereich L, Wozniak DM (2019) Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363(6422):74–77. https://doi.org/10.1126/science.aau9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Song L, Breitwieser FP, Salzberg SL (2016) Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26(12):1721–1729. https://doi.org/10.1101/gr.210641.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257. https://doi.org/10.1038/ncomms11257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martí JM (2019) Recentrifuge: Robust comparative analysis and contamination removal for metagenomics. PLoS Comput Biol 15(4):e1006967

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  27. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. https://arxiv.org/abs/13033997

  28. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290

    Article  CAS  PubMed  Google Scholar 

  30. Seibt KM, Schmidt T, Heitkam T (2018) FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics 34(20):3575–3577

    Article  CAS  PubMed  Google Scholar 

  31. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Takeda N, Katayama K (2003) Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 41(4):1548–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bagcchi S (2017) Looking back at yellow fever in Angola. Lancet Infect Dis 17(3):269–270. https://doi.org/10.1016/S1473-3099(17)30064-6

    Article  PubMed  Google Scholar 

  33. The L (2016) Zika's emerging threat for the Asia-Pacific region. Lancet 388(10049):1026. https://doi.org/10.1016/S0140-6736(16)31585-9

    Article  Google Scholar 

  34. Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, Thielebein A, Hinzmann J, Oestereich L, Wozniak DM, Efthymiadis K, Schachten D, Koenig F, Matjeschk J, Lorenzen S, Lumley S, Ighodalo Y, Adomeh DI, Olokor T, Omomoh E, Omiunu R, Agbukor J, Ebo B, Aiyepada J, Ebhodaghe P, Osiemi B, Ehikhametalor S, Akhilomen P, Airende M, Esumeh R, Muoebonam E, Giwa R, Ekanem A, Igenegbale G, Odigie G, Okonofua G, Enigbe R, Oyakhilome J, Yerumoh EO, Odia I, Aire C, Okonofua M, Atafo R, Tobin E, Asogun D, Akpede N, Okokhere PO, Rafiu MO, Iraoyah KO, Iruolagbe CO, Akhideno P, Erameh C, Akpede G, Isibor E, Naidoo D, Hewson R, Hiscox JA, Vipond R, Carroll MW, Ihekweazu C, Formenty P, Okogbenin S, Ogbaini-Emovon E, Gunther S, Duraffour S (2019) Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363(6422):74–77. https://doi.org/10.1126/science.aau9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krishnakumar R, Sinha A, Bird SW, Jayamohan H, Edwards HS, Schoeniger JS, Patel KD, Branda SS, Bartsch MS (2018) Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias. Sci Rep 8(1):3159

    Article  PubMed  PubMed Central  Google Scholar 

  36. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37(7):783–792

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Moore NE, Deng Y-M, Eccles DA, Hall RJ (2015) MinION nanopore sequencing of an influenza genome. Front Microbiol 6:766

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Hebei General Hospital, Shijiazhuang, Hebei, China for providing fecal clinical samples.

Funding

This work was supported by grants from the China Mega-Projects for Infectious Disease (2018ZX10711001, 2017ZX10104001 and 2018ZX10713-002). The funder had no role in the design, execution, or analysis of the study, nor in the preparation or approval of manuscripts related to the study.

Author information

Authors and Affiliations

Authors

Contributions

Conceived or designed study: YL, XY, YZ, and XM. Performed research: YL, XH, ML, and YZ. Analyzed data: YL, XH, BL, and MY. Contributed new methods or models: YL, YZ, and XM. Wrote the paper: YL.

Corresponding authors

Correspondence to Yao Xie, Yi Zhang or Xue-jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All aspects of the study were performed in accordance with national ethics regulations and approved by the Institutional Review Boards of National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention.

Additional information

Edited by Detlev H. Kruger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, Xz., Li, Mh. et al. Comparison of third-generation sequencing approaches to identify viral pathogens under public health emergency conditions. Virus Genes 56, 288–297 (2020). https://doi.org/10.1007/s11262-020-01746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-020-01746-4

Keywords

Navigation