Skip to main content
Log in

Flagellation of Shewanella oneidensis Impacts Bacterial Fitness in Different Environments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Flagella occur on many prokaryotes, which primarily propel cells to move from detrimental to favorable environments. A variety of species-specific flagellation patterns have been identified. Although it is presumed that for each of these flagellated microorganisms, an evolutionarily fixed flagellation pattern is favored under the normal living conditions, direct evidence is lacking. Here, we use Shewanella oneidensis, a rod-shaped Gram-negative bacterium with a monotrichous polar flagellum (MR-1, the wild-type), as a research model. The investigation has been enabled by multiple mutants with diverse flagellation patterns that had been generated by removing FlhF and FlhG proteins that control flagellar location and number, respectively. Growth assays, as a measure of fitness, revealed that the wild-type strain predominated in spreading on swim plates and in pellicles which form at the air–liquid interface. However, under the pellicles where oxygen is limited, both aflagellated and monotrichous lateral strains showed similar increase in fitness, whereas strains with multiple flagella were less competitive. Moreover, under shaking culturing conditions, the aflagellated strain outcompeted all other strains, including the wild-type, suggesting that cells devoid of flagella would be more likely enriched upon agitation. Overall, these data support the presumption that the monotrichous polar flagellum, as evolutionarily fixed in the wild-type strain, is optimal for the growth fitness of S. oneidensis over any other mutants under most test conditions. However, upon specific changes of environmental conditions, another form could come to predominate. These findings provide insight into the impacts of flagellation patterns and function on bacterial adaptation to differing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armitage JP (1999) Bacterial tactic responses. Adv Microb Physiol 41:229–289

    CAS  PubMed  Google Scholar 

  2. Johnson CN (2013) Fitness factors in Vibrios: a mini-review. Microb Ecol 65:826–851

    CAS  PubMed  Google Scholar 

  3. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    CAS  PubMed  Google Scholar 

  4. Atsumi T, McCarter L, Imae Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184

    CAS  PubMed  Google Scholar 

  5. Vaituzis Z, Doetsch RN (1969) Motility tracks: technique for quantitative study of bacterial movement. Appl Microbiol 17:584–588

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Moens S, Vanderleyden J (1996) Functions of bacterial flagella. Crit Rev Microbiol 22:67–100

    CAS  PubMed  Google Scholar 

  7. Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol Lett 224:151–159

    CAS  PubMed  Google Scholar 

  8. Fujii M, Shibata S, Aizawa S (2008) Polar, peritrichous, and lateral flagella belong to three distinguishable flagellar families. J Mol Biol 379:273–283

    CAS  PubMed  Google Scholar 

  9. Wang F, Wang J, Jian H, Zhang B, Li S, Wang F et al (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3:e1937

    PubMed  PubMed Central  Google Scholar 

  10. Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schuhmacher JS, Thormann KM, Bange G (2015) How bacteria maintain location and number of flagella? FEMS Microbiol Rev 39:812–822

    CAS  PubMed  Google Scholar 

  12. Guttenplan SB, Shaw S, Kearns DB (2013) The cell biology of peritrichous flagella in Bacillus subtilis. Mol Microbiol 87:211–229

    CAS  PubMed  Google Scholar 

  13. Haya S, Tokumaru Y, Abe N, Kaneko J, Aizawa S (2011) Characterization of lateral flagella of Selenomonas ruminantium. Appl Environ Microbiol 77:2799–2802

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu R, Ochman H (2007) Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci USA 104:7116–7121

    CAS  PubMed  Google Scholar 

  15. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    CAS  PubMed  Google Scholar 

  16. Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 1:e00131–e00210

    PubMed  PubMed Central  Google Scholar 

  17. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    CAS  PubMed  Google Scholar 

  18. Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37:849–871

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS et al (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603

    CAS  PubMed  Google Scholar 

  20. Bubendorfer S, Held S, Windel N, Paulick A, Klingl A, Thormann KM (2012) Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol 83:335–350

    CAS  PubMed  Google Scholar 

  21. Koerdt A, Paulick A, Mock M, Jost K, Thormann KM (2009) MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol 191:5085–5093

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F et al (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850

    CAS  PubMed  Google Scholar 

  23. Wu L, Wang J, Tang P, Chen H, Gao H (2011) Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS ONE 6:e21479

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi M, Wu L, Xia Y, Chen H, Luo Q, Sun L et al (2013) Exoprotein production correlates with morphotype changes of nonmotile Shewanella oneidensis mutants. J Bacteriol 195:1463–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun L, Jin M, Ding W, Yuan J, Kelly J, Gao H (2013) Posttranslational modification of flagellin FlaB in Shewanella oneidensis. J Bacteriol 195:2550–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun L, Dong Y, Shi M, Jin M, Zhou Q, Luo Z et al (2014) Two residues predominantly dictate functional difference in motility between Shewanella oneidensis flagellins FlaA and FlaB. J Biol Chem 289:14547–14559

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi M, Gao T, Ju L, Yao Y, Gao H (2014) Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis. Mol Microbiol 93:1269–1283

    CAS  PubMed  Google Scholar 

  28. Gao T, Shi M, Ju L, Gao H (2015) Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis. Mol Microbiol 98:571–585

    CAS  PubMed  Google Scholar 

  29. Gao T, Meng Q, Gao H (2017) Thioesterase YbgC affects motility by modulating c-di-GMP levels in Shewanella oneidensis. Sci Rep 7:3932

    PubMed  PubMed Central  Google Scholar 

  30. Gao T, Shi M, Gao H (2018) Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. J Bacteriol 200:e00796–e00817

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Green JC, Kahramanoglou C, Rahman A, Pender AM, Charbonnel N, Fraser GM (2009) Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J Mol Biol 391:679–690

    CAS  PubMed  Google Scholar 

  32. Kusumoto A, Nishioka N, Kojima S, Homma M (2009) Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus. J Biochem 146:643–650

    CAS  PubMed  Google Scholar 

  33. Schuhmacher JS, Rossmann F, Dempwolff F, Knauer C, Altegoer F, Steinchen W et al (2015) MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. Proc Natl Acad Sci USA 112:3092–3097

    CAS  PubMed  Google Scholar 

  34. Dasgupta N, Arora SK, Ramphal R (2000) fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182:357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Correa NE, Peng F, Klose KE (2005) Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 187:6324–6332

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan J, Chen Y, Zhou G, Chen H, Gao H (2013) Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta 1830:5248–5257

    CAS  PubMed  Google Scholar 

  37. Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJ, Wong GC, Linington RG et al (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13:255–268

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang Y, Gao H, Chen J, Dong Y, Wu L, He Z et al (2010) Pellicle formation in Shewanella oneidensis. BMC Microbiol 10:291

    PubMed  PubMed Central  Google Scholar 

  39. Zhou G, Yuan J, Gao H (2015) Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front Microbiol 6:790

    PubMed  PubMed Central  Google Scholar 

  40. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    CAS  PubMed  Google Scholar 

  41. Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness: a new role for the bacterial flagellum. EMBO J 24:2034–2042

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Najafi J, Shaebani MR, John T, Altegoer F, Bange G, Wagner C (2018) Flagellar number governs bacterial spreading and transport efficiency. Sci Adv 4:eaar6425

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation Project (No. 81874355) and the Zhejiang Provincial Natural Science Foundation (No. LY18H280008). The authors would like to express sincere gratitude to professor Haichun Gao for the gift of the strains used in this study. The authors are also grateful to Mr. Chris Wood for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RY and YC conceived and designed the experiments. RY performed the experiments and analyzed the data. RY and YC wrote the manuscript.

Corresponding author

Correspondence to Yi-Tao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RS., Chen, YT. Flagellation of Shewanella oneidensis Impacts Bacterial Fitness in Different Environments. Curr Microbiol 77, 1790–1799 (2020). https://doi.org/10.1007/s00284-020-01999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01999-0

Navigation