Skip to main content
Log in

Complete Genome Sequence of Lactobacillus plantarum EM, A Putative Probiotic Strain with the Cholesterol-Lowering Effect and Antimicrobial Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum EM is a probiotic strain with antimicrobial activity, cholesterol-lowering effects, and tolerance to acid and bile. To understand the genetic basis of the probiotic characteristics of this strain, genome sequencing and probiotic-related genetic analysis were performed. The genomic characteristics of L. plantarum EM were confirmed by comparative genomic analysis with 41 probiotic lactic acid bacteria, including 10 L. plantarum strains. L. plantarum EM was shown to contain a circular chromosome of 3,184,808 bp and eight plasmids with various lengths from 5,027 to 76,369 bp. The L. plantarum EM genome had a total of 3560 protein-coding genes, including probiotic-related genes, such as tolerance to acid and bile, temperature stress, and oxidative stress. Comparative genomic analysis showed that L. plantarum EM contained plantaricin and bovicin gene clusters, which are related to antimicrobial activity, and five bile salt hydrolase genes related to serum cholesterol-lowering effects. The genomic analysis confirmed the probiotic properties of L. plantarum EM, and our results indicated that this strain has potential application for use as an industrially important probiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12(3):758–773

    Article  CAS  Google Scholar 

  2. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F (2016) Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 18(12):4974–4989

    Article  CAS  Google Scholar 

  3. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995

    Article  CAS  Google Scholar 

  4. Kang J, Chung WH, Lim TJ, Whon TW, Lim S, Nam YD (2017) Complete genome sequence of Lactobacillus casei LC5, a potential probiotics for atopic dermatitis. Front Immunol 8:413

    PubMed  PubMed Central  Google Scholar 

  5. Reid G, Jass J, Sebulsky MT, Mccormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–672

    Article  Google Scholar 

  6. Oh NS, Joung JY, Lee JY, Kim Y (2018) Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLoS ONE 13:e0192021

    Article  Google Scholar 

  7. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701

    Article  CAS  Google Scholar 

  8. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:1–14

    Article  Google Scholar 

  9. Patel AK, Singhania RR, Pandey A, Chincholkar SB (2010) Probiotic bile salt hydrolase: current developments and perspectives. Appl Biochem Biotechnol 162(1):166–180

    Article  CAS  Google Scholar 

  10. Leroy F, Vuyst LD (2004) Lactic acid bacteria as a functional starter culture for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  11. Li P, Gu Q, Zhou Q (2016) Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms. J Biotechnol 238:52–55

    Article  CAS  Google Scholar 

  12. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  Google Scholar 

  13. Abriouel H, Pérez Montoro B, Casimiro-Soriguer CS, Pérez Pulido AJ, Knapp CW, Caballero Gómez N, Castillo-Gutiérrez S, Estudillo-Martínez MD, Gálvez A, Benomar N (2017) Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence. Front Microbiol 8:891

    Article  Google Scholar 

  14. Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736

    Article  CAS  Google Scholar 

  15. Choi EA, Chang HC (2015) Cholesterol-lowing effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT - Food Sci Technol 62:210–217

    Article  CAS  Google Scholar 

  16. Kim E, Cho Y, Lee Y, Han SK, Kim CG, Choo DW, Kim YR, Kim HY (2017) A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Int J Food Microbiol 243:9–15

    Article  CAS  Google Scholar 

  17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  Google Scholar 

  18. Grant JR, Stothard P (2008) The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184

    Article  CAS  Google Scholar 

  19. Kleinheinz KA, Joensen KG, Larsen MV (2014) Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:e27943

    Article  Google Scholar 

  20. Patel AK, Singhania RR, Pandey A, Chincholkar SB (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281

    Article  Google Scholar 

  21. Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33(6):1635–1638

    Article  CAS  Google Scholar 

  22. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3:e1319

    Article  Google Scholar 

  23. Delmont TO, Eren AM (2018) Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6:e4320

    Article  Google Scholar 

  24. Chaudhari NM, Gupta VK, Dutta C (2016) BPGA: an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373

    Article  CAS  Google Scholar 

  25. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  Google Scholar 

  26. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187(17):6119–6127

    Article  CAS  Google Scholar 

  27. Evanovich E, de Souza Mendonça Mattos PJ, Guerreiro JF (2019) Comparative Genomic Analysis of Lactobacillus plantarum: an overview. Int J Genomics 2019:4973214

    Article  Google Scholar 

  28. Haghi M, Koseoglu AE, Karaboz I, Un C (2016) Detection of heat shock protein (DnaK, DnaJ and GrpE) horizontal gene transfers among Acanthamoeba polyphaga, Acanthamoeba polyphaga mimivirus (APMV), amoeba-infecting bacteria and sputnik virophage. Int J Adv Biotechnol Res 7:1618–1622

    CAS  Google Scholar 

  29. Kim WS, Khunajakr N, Ren J, Dunn NW (1998) Conservation of the major cold shock protein in lactic acid bacteria. Curr Microbiol 37:333–336

    Article  CAS  Google Scholar 

  30. Ren J, Sun K, Wu Z, Yao J, Guo B (2011) All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III. J Food Sci 76:M622–M628

    Article  CAS  Google Scholar 

  31. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103(42):15611–15616

    Article  Google Scholar 

  32. da Silva SS, Vitolo M, González JMD, Oliveira RPS (2014) Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 64:527–536

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (Grant Number 918005-4).

Author information

Authors and Affiliations

Authors

Contributions

EK performed the experiments, analyzed data and wrote the manuscript. HCC reviewed and edited the manuscript. HYK designed this study, supervised all experiments and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hae-Yeong Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Chang, H.C. & Kim, HY. Complete Genome Sequence of Lactobacillus plantarum EM, A Putative Probiotic Strain with the Cholesterol-Lowering Effect and Antimicrobial Activity. Curr Microbiol 77, 1871–1882 (2020). https://doi.org/10.1007/s00284-020-02000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02000-8

Navigation