Skip to main content
Log in

Cultivation of the Next-Generation Probiotic Akkermansia muciniphila, Methods of Its Safe Delivery to the Intestine, and Factors Contributing to Its Growth In Vivo

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Probiotics are widely used for treatment of various human diseases, and their spectrum is not limited by intestinal diseases only. That is why there is a growing interest in the development of new probiotics that can modify intestinal microbiome in accordance with the needs for treatment. In 2004, Akkermansia muciniphila was discovered, and later it was shown to prevent the development of metabolic syndrome and diabetes mellitus in mice. Nevertheless, before using it for treatment, conditions necessary for its growth need to be identified. In particular, certain carbohydrates, including amino sugars, such as N-acetylglucosamine and N-acetylgalactosamine, were discovered to be necessary for successful cultivation of A. muciniphila in vitro. This is not surprising, since the natural habitat of A. muciniphila is intestinal mucin, which contains different amino sugars. Besides, ways of A. muciniphila protection from harmful factors on the way to the intestine have been developed. In addition, prebiotics such as oligosaccharides, polyphenols, as well as metformin used for diabetes mellitus treatment can promote its growth in the intestine. Finally, there is the first evidence of A. muciniphila administration to humans, which confirms the safety of its use and describes positive metabolic effects. Overall, these data suggest the possibility of an early introduction of this next-generation probiotic into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165. https://doi.org/10.2337/dc14-0769

    Article  CAS  PubMed  Google Scholar 

  2. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  3. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG (2014) Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284–291. https://doi.org/10.1289/ehp.1307429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao B, Bian X, Mahbub R, Lu K (2017) Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198–206. https://doi.org/10.1289/EHP202

    Article  CAS  PubMed  Google Scholar 

  5. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  6. Allin KH, Nielsen T, Pedersen O (2015) Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol 172:R167–R177. https://doi.org/10.1530/EJE-14-0874

    Article  CAS  PubMed  Google Scholar 

  7. El Hage R, Hernandez-Sanabria E, Van de Wiele T (2017) Emerging trends in "Smart Probiotics": functional consideration for the development of novel health and industrial applications. Front Microbiol 8:1889. https://doi.org/10.3389/fmicb.2017.01889

    Article  PubMed  PubMed Central  Google Scholar 

  8. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476. https://doi.org/10.1099/ijs.0.02873-0

    Article  CAS  PubMed  Google Scholar 

  9. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648. https://doi.org/10.1128/AEM.01226-07

    Article  CAS  PubMed  Google Scholar 

  10. Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C (2017) Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol 31:637–642. https://doi.org/10.1016/j.bpg.2017.10.001

    Article  PubMed  Google Scholar 

  11. Derrien M, Belzer C, de Vos WM (2017) Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 106:171–181. https://doi.org/10.1016/j.micpath.2016.02.005

    Article  PubMed  Google Scholar 

  12. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665. https://doi.org/10.1073/pnas.1006451107

    Article  PubMed  Google Scholar 

  13. Thomsson KA, Holmén-Larsson JM, Angström J, Johansson ME, Xia L, Hansson GC (2012) Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology 22:1128–1139. https://doi.org/10.1093/glycob/cws083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos VAP, Smidt H, Belzer C, de Vos WM (2017) Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol 83:e01014–e01017. https://doi.org/10.1128/AEM.01014-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (2001) Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. J Biol Chem 276:15131–15136. https://doi.org/10.1074/jbc.M100220200

    Article  CAS  PubMed  Google Scholar 

  16. Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC, Lau PC, Berghuis AM, Young NM, Wakarchuk WW (2005) A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 280:4792–4802. https://doi.org/10.1074/jbc.M407767200

    Article  CAS  PubMed  Google Scholar 

  17. van Passel MW, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, Chain PS, Woyke T, Palva A, de Vos WM, Smidt H (2011) The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6:e16876. https://doi.org/10.1371/journal.pone.0016876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C (2018) Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb Biotechnol 11:476–485. https://doi.org/10.1111/1751-7915.13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA (2008) Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 474:302–317. https://doi.org/10.1016/j.abb.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  20. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x

    Article  CAS  PubMed  Google Scholar 

  21. Wu HC, Wu TC (1971) Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol 105:455–466

    Article  CAS  Google Scholar 

  22. Tanaka T, Takahashi F, Fukui T, Fujiwara S, Atomi H, Imanaka T (2005) Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol 187:7038–7044. https://doi.org/10.1128/JB.187.20.7038-7044.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadner RJ, Murphy GP, Stephens CM (1992) Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol 138:2007–2014. https://doi.org/10.1099/00221287-138-10-2007

    Article  CAS  PubMed  Google Scholar 

  24. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A, Delzenne NM, Klievink J, Bhattacharjee A, van der Ark KC, Aalvink S, Martinez LO, Dumas ME, Maiter D, Loumaye A, Hermans MP, Thissen JP, Belzer C, de Vos WM, Cani PD (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113. https://doi.org/10.1038/nm.4236

    Article  CAS  PubMed  Google Scholar 

  25. Tripathi M, Giri S (2014) Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030

    Article  CAS  Google Scholar 

  26. Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: a review. J Microbiol Methods 66:183–193. https://doi.org/10.1016/j.mimet.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  27. Chen M, Mustapha A (2012) Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiol 30:68–73. https://doi.org/10.1016/j.fm.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  28. Marcial-Coba MS, Cieplak T, Cahú TB, Blennow A, Knøchel S, Nielsen DS (2018) Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food Funct 9:5868–5879. https://doi.org/10.1039/c8fo01331d

    Article  CAS  PubMed  Google Scholar 

  29. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  Google Scholar 

  30. Possemiers S, Marzorati M, Verstraete W, Van de Wiele T (2010) Bacteria and chocolate: a successful combination for probiotic delivery. Int J Food Microbiol 141:97–103. https://doi.org/10.1016/j.ijfoodmicro.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  31. Lalicic-Petronijevic J, Popov-Raljić J, Obradović D, Radulović Z, Paunović D, Petrušić M, Pezo L (2015) Viability of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 and their impact on sensory and rheological properties of milk and dark chocolates during storage for 180 days. J Funct Foods 15:541–550. https://doi.org/10.1016/j.jff.2015.03.046

    Article  CAS  Google Scholar 

  32. Marcial-Coba MS, Saaby L, Knøchel S, Nielsen DS (2019) Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny290

    Article  PubMed  Google Scholar 

  33. van der Ark KCH, Nugroho ADW, Berton-Carabin C, Wang C, Belzer C, de Vos WM, Schroen K (2017) Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions. Food Res Int 102:372–379. https://doi.org/10.1016/j.foodres.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  34. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  35. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Muccioli GM, Neyrinck AM, Possemiers S, Van Holle A, François P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786. https://doi.org/10.2337/db11-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yui T, Ogawa K, Sarko A (1992) Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Carbohydr Res 229:41–55. https://doi.org/10.1016/S0008-6215(00)90479-8

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Zhang X, Wang S, Li H, Lu Z, Shi J, Xu Z (2018) Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food Funct 9:3916–3929. https://doi.org/10.1039/c8fo00209f

    Article  CAS  PubMed  Google Scholar 

  38. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  39. Xu Y, Simon JE, Welch C, Wightman JD, Ferruzzi MG, Ho L, Pasinetti GM, Passinetti GM, Wu Q (2011) Survey of polyphenol constituents in grapes and grape-derived products. J Agric Food Chem 59:10586–10593. https://doi.org/10.1021/jf202438d

    Article  CAS  PubMed  Google Scholar 

  40. Liang Z, Yang Y, Cheng L, Zhong GY (2012) Characterization of polyphenolic metabolites in the seeds of Vitis germplasm. J Agric Food Chem 60:1291–1299. https://doi.org/10.1021/jf2046637

    Article  CAS  PubMed  Google Scholar 

  41. Choy YY, Jaggers GK, Oteiza PI, Waterhouse AL (2013) Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. J Agric Food Chem 61:121–127. https://doi.org/10.1021/jf301939e

    Article  CAS  PubMed  Google Scholar 

  42. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858. https://doi.org/10.2337/db14-1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roopchand DE, Kuhn P, Krueger CG, Moskal K, Lila MA, Raskin I (2013) Concord grape pomace polyphenols complexed to soy protein isolate are stable and hypoglycemic in diabetic mice. J Agric Food Chem 61:11428–11433. https://doi.org/10.1021/jf403238e

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43:1770–1772. https://doi.org/10.1194/jlr.C200010-JLR200

    Article  CAS  PubMed  Google Scholar 

  45. Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 5:3–17. https://doi.org/10.3920/BM2012.0065

    Article  CAS  PubMed  Google Scholar 

  46. Sinclair EM, Drucker DJ (2005) Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 20:357–365. https://doi.org/10.1152/physiol.00030.2005

    Article  CAS  Google Scholar 

  47. Masumoto S, Terao A, Yamamoto Y, Mukai T, Miura T, Shoji T (2016) Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci Rep 6:31208. https://doi.org/10.1038/srep31208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. El Gharras H (2009) Polyphenols: food sources, properties and applications: a review. Int J Food Sci Technol 44:2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x

    Article  CAS  Google Scholar 

  49. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181. https://doi.org/10.1016/j.copbio.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  50. Pernicova I, Korbonits M (2014) Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156. https://doi.org/10.1038/nrendo.2013.256

    Article  CAS  PubMed  Google Scholar 

  51. Bailey CJ, Wilcock C, Scarpello JH (2008) Metformin and the intestine. Diabetologia 51:1552–1553. https://doi.org/10.1007/s00125-008-1053-5

    Article  CAS  PubMed  Google Scholar 

  52. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735. https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  53. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:345–349. https://doi.org/10.1038/nature10863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40:54–62. https://doi.org/10.2337/dc16-1324

    Article  CAS  PubMed  Google Scholar 

  55. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O, consortium M. (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. https://doi.org/10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25:1096–1103. https://doi.org/10.1038/s41591-019-0495-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article belongs to AMK. Material preparation, data collection and analysis were performed by AMK and AVR. The work was drafted by AVR and critically revised by OVS and AMK.

Corresponding author

Correspondence to Anastasiia V. Ropot.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ropot, A.V., Karamzin, A.M. & Sergeyev, O.V. Cultivation of the Next-Generation Probiotic Akkermansia muciniphila, Methods of Its Safe Delivery to the Intestine, and Factors Contributing to Its Growth In Vivo. Curr Microbiol 77, 1363–1372 (2020). https://doi.org/10.1007/s00284-020-01992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01992-7

Navigation