Skip to main content

Advertisement

Log in

Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The use of induced pluripotent stem cells (IPSC) is a promising approach to the therapy of CNS diseases. The undeniable advantage of IPSC technology is the possibility of obtaining practically all types of somatic cells for autologous transplantation bypassing bioethical problems. The review presents integrative and non-integrative methods for obtaining IPSC and the ways of their in vitro and in vivo application for the study and treatment of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav. 2019;9(3). ID e01214. https://doi.org/10.1002/brb3.1214

  2. Bhattacharya S, Gangaraju R, Chaum E. Recent advances in retinals cell therapy. Curr. Mol. Biol. Rep. 2017;3(3):172-182.

    PubMed  PubMed Central  Google Scholar 

  3. Boese AC, Le QE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res. Ther. 2018;9(1):154. https://doi.org/10.1186/s13287-018-0913-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Börger AK, Eicke D, Wolf C, Gras C, Aufderbeck S, Schulze K, Engels L, Eiz-Vesper B, Schambach A, Guzman CA, Lachmann N, Moritz T, Martin U, Blasczyk R, Figueiredo C. Generation of HLA-universal iPSC-derived megakaryocytes and platelets for survival under refractoriness conditions. Mol. Med. 2016;22:274-285.

    PubMed  PubMed Central  Google Scholar 

  5. Bossolasco P, Sassone F, Gumina V, Peverelli S, Garzo M, Silani V. Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient. Stem Cell Res. 2018;30:61-68.

    CAS  PubMed  Google Scholar 

  6. Chang DJ, Lee N, Park IH, Choi C, Jeon I, Kwon J, Oh SH, Shin DA, Do JT, Lee DR, Lee H, Moon H, Hong KS, Daley GQ, Song J. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22(8):1427-1440.

    PubMed  Google Scholar 

  7. Chau M, Deveau TC, Song M, Wei ZZ, Gu X, Yu SP, Wei L. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke. Oncotarget. 2017;8(57):97,537- 97,553.

    Google Scholar 

  8. Cheng Y, Zhang J, Deng L, Johnson NR, Yu X, Zhang N, Lou T, Zhang Y, Wei X, Chen Z, He S, Li X, Xiao J. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int. J. Clin. Exp. Pathol. 2015;8(3):2928-2936.

    PubMed  PubMed Central  Google Scholar 

  9. Cho HJ, Lee CS, Kwon YW, Paek JS, Lee SH, Hur J, Lee EJ, Roh TY, Chu IS, Leem SH, Kim Y, Kang HJ, Park YB, Kim HS. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood. 2010;116(3):386-395.

    CAS  PubMed  Google Scholar 

  10. Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, Zhang J, Moseley ME, Guzman R. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J. Cereb. Blood Flow Metab. 2011;31(5):1263-1271.

    PubMed  Google Scholar 

  11. Chun YS, Byun K, Lee B. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anat. Cell Biol. 2011;44(4):245-255.

    PubMed  PubMed Central  Google Scholar 

  12. Cyranoski D. Stem-cell pioneer banks on future therapies. Nature. 2012;488:139. https://doi.org/10.1038/488139a

    Article  CAS  PubMed  Google Scholar 

  13. Davis RP, Nemes C, Varga E, Freund C, Kosmidis G, Gkatzis K, de Jong D, Szuhai K, Dinnyés A, Mummery CL. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation. 2013;86(1-2):30-37.

    CAS  PubMed  Google Scholar 

  14. Deng J, Zhang Y, Xie Y, Zhang L, Tang P. Cell transplantation for spinal cord injury: tumorigenicity of induced pluripotent stem cell-derived neural stem/progenitor cells. Stem Cells Int. 2018;2018. ID 5653787. https://doi.org/10.1155/2018/5653787

  15. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM, Lanier LL, Schrepfer S. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 2019;37(3):252-258.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277-280.

    CAS  PubMed  Google Scholar 

  17. Ebrahimi A, Keske E, Mehdipour A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed. Pharmacother. 2019;112. ID 108663. https://doi.org/10.1016/j.biopha.2019.108663

  18. Eckert A, Huang L, Gonzalez R, Kim HS, Hamblin MH, Lee JP. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl. Med. 2015;4(7):841-851.

    PubMed  PubMed Central  Google Scholar 

  19. Fujimori K, Matsumoto T, Kisa F, Hattori N, Okano H, Akamatsu W. Escape from pluripotency via inhibition of TGF-β/ BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells. Stem Cell Rep. 2017;9(5):1675-1691.

    CAS  Google Scholar 

  20. Grabundzija I, Wang J, Sebe A, Erdei Z, Kajdi R, Devaraj A, Steinemann D, Szuhai K, Stein U, Cantz T, Schambach A, Baum C, Izsvák Z, Sarkadi B, Ivics Z. Sleeping Beauty transposon- based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 2013;41(3):1829-1847.

    CAS  PubMed  Google Scholar 

  21. Guzman R, Janowski M, Walczak P. Intra-arterial delivery of cell therapies for stroke. Stroke. 2018;49(5):1075-1082.

    PubMed  PubMed Central  Google Scholar 

  22. Hayashi T, Lamba DA, Slowik A, Reh TA, Bermingham- McDonogh O. A method for stabilizing RNA for transfection that allows control of expression duration. Dev. Dyn. 2010;239(7):2034-2040.

    CAS  Google Scholar 

  23. Jaiswal MK. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regen. Res. 2017;12(5):723-736.

    PubMed  PubMed Central  Google Scholar 

  24. Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang SC. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis. 2013;22(4):304-308.

    PubMed  Google Scholar 

  25. Ji P, Manupipatpong S, Xie N, Li Y. Induced pluripotent stem cells: generation strategy and epigenetic mystery behind reprogramming. Stem Cells Int. 2016;2016. ID 8415010. https://doi.org/10.1155/2016/8415010

  26. Kang S, Chen X, Gong S, Yu P, Yau S, Su Z, Zhou L, Yu J, Pan G, Shi L. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci. Rep. 2017;7(1). ID 12233. https://doi.org/10.1038/s41598-017-12452-x

  27. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J. Cereb. Blood Flow Metab. 2010;30(8):1487-1493.

    PubMed  PubMed Central  Google Scholar 

  28. Kobolák J, Molnár K, Varga E, Bock I, Jezsó B, Téglási A, Zhou S, Lo Giudice M, Hoogeveen-Westerveld M, Pijnappel WP, Phanthong P, Varga N, Kitiyanant N, Freude K, Nakanishi H, László L, Hyttel P, Dinnyés A. Modelling the neuropathology of lysosomal storage disorders through diseasespecific human induced pluripotent stem cells. Exp. Cell Res. 2019;380(2):216-233.

    PubMed  Google Scholar 

  29. Kokaia Z, Llorente IL, Carmichael ST. Customized brain cells for stroke patients using pluripotent stem cells. Stroke. 2018;49(5):1091-1098.

    PubMed  PubMed Central  Google Scholar 

  30. Krause M, Phan T., Ma H, Sobey CG, Lim R. Cell-based therapies for stroke: are we There yet? Front. Neurol. 2019;10. ID 656. https://doi.org/10.3389/fneur.2019.00656

  31. Leung A, Murphy GJ. Multisystemic disease modeling of liverderived protein folding disorders using induced pluripotent stem cells (iPSCs). Methods Mol. Biol. 2016;1353:261-270.

    CAS  PubMed  Google Scholar 

  32. Li C, Ding L, Sun CW, Wu L.C, Zhou D, Pawlik KM, Khodadadi- Jamayran A, Westin E, Goldman FD, Townes TM. Novel HDAd/EBV reprogramming vector and highly efficient Ad/ CRISPR-Cas sickle cell disease gene correction. Sci. Rep. 2016;6. ID 30422. https://doi.org/10.1038/srep30422

  33. Li H, Jiang H, Zhang B, Feng J. Modeling Parkinson’s disease using patient-specific induced pluripotent stem cells. J. Parkinsons Dis. 2018;8(4):479-493.

    PubMed  PubMed Central  Google Scholar 

  34. Liu LP, Li YM, Guo NN, Li S, Ma X, Zhang YX, Gao Y, Huang JL, Zheng DX, Wang LY, Xu H, Hui L, Zheng YW. Therapeutic potential of patient iPSC-derived imelanocytes in autologous transplantation. Cell Rep. 2019;27(2):455-466.e5.

  35. McKinney CE. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen. Res. 2017;12(7):1062-1067.

    PubMed  PubMed Central  Google Scholar 

  36. Medvedev SP, Shevchenko AI, Zakian SM. Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae. 2010;2(2):18-28.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Rep. 2013;1(4):283-292.

    CAS  Google Scholar 

  38. Namestnikova DD, Tairova RT, Cherkashova EA, Sukhinich KK, Gubskiy IL, Gubskiy LV, Yarygin KN. Cell therapy for ischemic stroke. Results of clinical trials and perspectives of clinical application in the Russian Federation. Zh. Nevrol. Psikhiatr. Im. S.S.Korsakova. 2018;118(12, Vyp. 2):94-104.

  39. Namestnikova DD, Tairova RT, Sukhinich KK, Cherkashova EA, Gubskiy IL, Gubskiy LV, Yarygin KN. Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials. Zh. Nevrol. Psikhiatr. Im. S.S.Korsakova. 2018;118(9, Vyp. 2):69-75.

  40. Nayler SP, Powell JE, Vanichkina DP, Korn O, Wells CA, Kanjhan R, Sun J, Taft RJ, Lavin MF, Wolvetang EJ. Human iPSCderived cerebellar neurons from a patient with ataxia-telangiectasia reveal disrupted gene regulatory networks. Front. Cell. Neurosci. 2017;11. ID 321. doi: 10.3389/fncel.2017.00321

  41. Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain. 2017;140(8):2079-2092.

    PubMed  Google Scholar 

  42. Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y, Monni E, Tornero D, Ahlenius H, Ladewig J, Brüstle O, Lindvall O, Kokaia Z. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012;30(6):1120-1133.

    CAS  PubMed  Google Scholar 

  43. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317.

    CAS  PubMed  Google Scholar 

  44. Palladino VS, Subrata NOC, Geburtig-Chiocchetti A, McNeill R, Hoffmann P, Reif A, Kittel-Schneider S. Generation of human induced pluripotent stem cell lines (hiPSC) from one bipolar disorder patient carrier of a DGKH risk haplotype and one non-risk-variant-carrier bipolar disorder patient. Stem Cell Res. 2018;32:104-109.

    PubMed  Google Scholar 

  45. Patzke C, Südhof TC. The conditional KO approach: Cre/ Lox technology in human neurons. Rare Dis. 2016;4(1). ID e1131884. https://doi.org/10.1080/21675511.2015.1131884

  46. Pavoni S, Jarray R, Nassor F, Guyot AC, Cottin S, Rontard J, Mikol J, Mabondzo A, Deslys JP, Yates F. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer’s disease associated phenotypes. PLoS One. 2018;13(12). ID e0209150. https://doi.org/10.1371/journal.pone.0209150

  47. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; American Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/ American Stroke Association. Stroke. 2018;49(3):e46-e110.

    PubMed  Google Scholar 

  48. Ramotowski C, Qu X, Villa-Diaz L.G. Progress in the use of induced pluripotent stem cell-derived neural cells for traumatic spinal cord injuries in animal populations: meta-analysis and review. Stem Cells Transl. Med. 2019;8(7):681-693.

  49. Seki T, Fukuda K. Methods of induced pluripotent stem cells for clinical application. World J. Stem Cells. 2015;7(1):116-125.

    PubMed  PubMed Central  Google Scholar 

  50. Sendfeld F, Selga E, Scornik FS, Pérez GJ, Mills NL, Brugada R. Experimental models of Brugada syndrome. Int. J. Mol. Sci. 2019;20(9). pii: E2123. https://doi.org/10.3390/ijms20092123

  51. Shao L, Wu WS. Gene-delivery systems for iPS cell generation. Expert Opin. Biol. Ther. 2010;10(2):231-242.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH, Han H. Stem cells: a promising candidate to treat neurological disorders. Neural Regen. Res. 2018;13(7):1294-1304.

    PubMed  PubMed Central  Google Scholar 

  53. Song M, Kim YJ, Kim YH, Roh J, Kim EC, Lee HJ, Kim SU, Yoon BW. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant. 2015;24(2):183-190.

    PubMed  Google Scholar 

  54. Steinle H, Weber M, Behring A, Mau-Holzmann U, Schlensak C, Wendel HP, Avci-Adali M. Generation of iPSCs by nonintegrative RNA-based reprogramming techniques: benefits of self-replicating RNA versus synthetic mRNA. Stem Cells Int. 2019;2019. ID 7641767. https://doi.org/10.1155/2019/7641767

  55. Stephen SL, Montini E, Sivanandam VG, Al-Dhalimy M, Kestler HA, Finegold M, Grompe M, Kochanek S. Chromosomal integration of adenoviral vector DNA in vivo. J. Virol. 2010;84(19):9987-9994.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Studer L. Strategies for bringing stem cell-derived dopamine neurons to the clinic-The NYSTEM trial. Prog. Brain Res. 2017;230:191-212.

    PubMed  Google Scholar 

  57. Sułkowski M, Konieczny P, Chlebanowska P, Majka M. Introduction of exogenous HSV-TK suicide gene increases safety of keratinocyte-derived induced pluripotent stem cells by providing genetic “Emergency Exit” switch. Int. J. Mol. Sci. 2018;19(1). pii: E197. https://doi.org/10.3390/ijms19010197

  58. Sullivan CR, Mielnik CA, Funk A, O’Donovan SM, Bentea E, Pletnikov M, Ramsey AJ, Wen Z, Rowland LM, Mc-Cullumsmith RE. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci. Rep. 2019;9(1). ID 5087. https://doi.org/10.1038/s41598-019-41572-9

  59. Tai L, Teoh HK, Cheong SK. Reprogramming human dermal fibroblast into induced pluripotent stem cells using nonintegrative Sendai virus for transduction. Malays. J. Pathol. 2018;40(3):325-329.

    CAS  PubMed  Google Scholar 

  60. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872.

    CAS  PubMed  Google Scholar 

  61. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.

    CAS  PubMed  Google Scholar 

  62. Telpalo-Carpio S, Aguilar-Yañez J, Gonzalez-Garza M, Cruz- Vega D, Moreno-Cuevas J. iPS cells generation: an overview of techniques and methods. J. Stem Cells Regen. Med. 2013;9(1):2-8.

    Google Scholar 

  63. Tipanee J, Chai YC, VandenDriessche T, Chuah MK. Preclinical and clinical advances in transposon-based gene therapy. Biosci. Rep. 2017;37(6). pii: BSR20160614. https://doi.org/10.1042/BSR20160614

  64. Tornero D, Wattananit S, Grønning Madsen M, Koch P, Wood J, Tatarishvili J, Mine Y, Ge R, Monni E, Devaraju K, Hevner RF, Brüstle O, Lindvall O, Kokaia Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain J. Neurol. 2013;136(Pt 12):3561-3577.

    Google Scholar 

  65. Wang L, Yi F, Fu L, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xu X, Yu Y, Qiao J, Belmonte JCI, Yang Z, Yuan Y, Qu J, Liu GH. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell. 2017;8(5):365-378.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Watanabe T, Nagai A, Sheikh AM, Mitaki S, Wakabayashi K, Kim SU, Kobayashi S, Yamaguchi S. A human neural stem cell line provides neuroprotection and improves neurological performance by early intervention of neuroinflammatory system. Brain Res. 2016;1631:194-203.

    Google Scholar 

  67. Xiao B, Ng HH, Takahashi R, Tan EK. Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J. Neurol. Neurosurg. Psychiatry. 2016;87(7):697-702.

    PubMed  Google Scholar 

  68. Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol. 2018;7. ID 30. https://doi.org/10.1186/s40164-018-0122-9

  69. Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, Chen Q, Zhou T, Li X, Hou J, Chen S, Luo R, Qin D, Pei D, Pan G. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 2013;8(8). ID e70573. https://doi.org/10.1371/journal.pone.0070573

  70. Yang CS, Li Z, Rana TM. microRNAs modulate iPS cell generation. RNA. 2011;17(8):1451-1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoo J, Kim HS, Hwang DY. Stem cells as promising therapeutic options for neurological disorders. J. Cell. Biochem. 2013;114(4):743-753.

    CAS  PubMed  Google Scholar 

  72. Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther. 2013;4(3):73. https://doi.org/10.1186/scrt224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang C, Cao J, Li X, Xu H, Wang W, Wang L, Zhao X, Li W, Jiao J, Hu B, Zhou Q, Zhao T. Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Sci. China Life Sci. 2016;59(9):950-957.

    CAS  PubMed  Google Scholar 

  74. Zhang Y, Ge M, Hao Q, Dong B. Induced pluripotent stem cells in rat models of Parkinson’s disease: A systematic review and meta-analysis. Biomed. Rep. 2018;8(3):289-296.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Leonov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 253-261, December, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkashova, E.A., Leonov, G.E., Namestnikova, D.D. et al. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bull Exp Biol Med 168, 566–573 (2020). https://doi.org/10.1007/s10517-020-04754-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04754-4

Key Words

Navigation