Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 24, 2020

Identification of tuliposide G, a novel glucoside ester-type tuliposide, and its distribution in tulip

  • Taiji Nomura ORCID logo EMAIL logo and Yasuo Kato

Abstract

Tuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4′-hydroxy-2′-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name ‘tuliposide G’ (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.

Acknowledgments

We appreciate valuable discussions with Dr. Naoki Kitaoka (Toyama Prefectural University). We thank Ms. Yuka Shinmura and Ms. Ran Masumoto (Toyama Prefectural University) for technical assistance. This work was supported by Japan Society for the Promotion of Science KAKENHI, funder id: http://dx.doi.org/10.13039/501100001691, grant no. JP18K05463 (to TN).

References

1. Tschesche R, Kämmerer F-J, Wulff G, Schönbeck F. Über die antibiotisch wirksamen substanzen der tulpe (Tulipa gesneriana). Tetrahedron Lett 1968;9:701–6.10.1016/S0040-4039(00)75615-2Search in Google Scholar

2. Tschesche R, Kämmerer F-J, Wulff G. Über die struktur der antibiotisch aktiven substanzen der tulpe (Tulipa gesneriana L.). Chem Ber 1969;102:2057–71.10.1002/cber.19691020631Search in Google Scholar

3. Nomura T. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip. Biosci Biotechnol Biochem 2017;81:81–94.10.1080/09168451.2016.1240608Search in Google Scholar

4. Christensen LP, Kristiansen K. Isolation and quantification of tuliposides and tulipalins in tulips (Tulipa) by high-performance liquid chromatography. Contact Dermat 1999;40:300–9.10.1111/j.1600-0536.1999.tb06080.xSearch in Google Scholar

5. Christensen LP. A further tuliposide from Alstroemeria revoluta. Phytochemistry 1995;40:49–51.10.1016/0031-9422(95)00235-YSearch in Google Scholar

6. Kato Y, Shoji K, Ubukata M, Shigetomi K, Sato Y, Nakajima N, et al. Purification and characterization of a tuliposide-converting enzyme from bulbs of Tulipa gesneriana. Biosci Biotechnol Biochem 2009;73:1895–7.10.1271/bbb.90226Search in Google Scholar PubMed

7. Kato Y, Yoshida H, Shoji K, Sato Y, Nakajima N, Ogita S. A facile method for the preparation of α-methylene-γ-butyrolactones from tulip tissues by enzyme-mediated conversion. Tetrahedron Lett 2009;50:4751–3.10.1016/j.tetlet.2009.06.018Search in Google Scholar

8. Kato Y, Futanaga T, Nomura T. Substrate specificity of tuliposide-converting enzyme, a unique non-ester-hydrolyzing carboxylesterase in tulip: effects of the alcohol moiety of substrate on the enzyme activity. Bioorg Med Chem Lett 2019;29:664–7.10.1016/j.bmcl.2018.12.010Search in Google Scholar PubMed

9. Nomura T, Ogita S, Kato Y. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip. Plant Physiol 2012;159:565–78.10.1104/pp.112.195388Search in Google Scholar PubMed PubMed Central

10. Nomura T, Tsuchigami A, Ogita S, Kato Y. Molecular diversity of tuliposide A-converting enzyme in the tulip. Biosci Biotechnol Biochem 2013;77:1042–8.10.1271/bbb.130021Search in Google Scholar PubMed

11. Nomura T, Murase T, Ogita S, Kato Y. Molecular identification of tuliposide B-converting enzyme: a lactone-forming carboxylesterase from the pollen of tulip. Plant J 2015;83:252–62.10.1111/tpj.12883Search in Google Scholar

12. Nomura T, Ueno A, Ogita S, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the root-specific isozyme. Biosci Biotechnol Biochem 2017;81:1185–93.10.1080/09168451.2017.1295806Search in Google Scholar

13. Nomura T, Kuchida R, Kitaoka N, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the third isozyme with a distinct expression profile. Biosci Biotechnol Biochem 2018;82:810–20.10.1080/09168451.2018.1438170Search in Google Scholar

14. Christensen LP. Tuliposides from Tulipa sylvestris and T. turkestanica. Phytochemistry 1999;51:969–74.10.1016/S0031-9422(98)00716-XSearch in Google Scholar

15. Nomura T, Ogita S, Kato Y. Isolation and identification of tuliposides D and F from tulip cultivars. Z Naturforsch C 2020;75:7–12.10.1515/znc-2019-0123Search in Google Scholar

16. Nomura T, Ogita S, Kato Y. One-step enzymatic synthesis of 1-tuliposide A using tuliposide-converting enzyme. Appl Biochem Biotechnol 2019;188:12–28.10.1007/s12010-018-2903-3Search in Google Scholar

17. Sime JT, Barnes RD, Elson SW, Jarvest RL, O’Toole KJ. Chemoenzymatic approach to the synthesis of the antiviral agents penciclovir and famciclovir in isotopically chiral [13C] labelled form. J Chem Soc Perkin Trans 1 1992;1653–8.10.1039/p19920001653Search in Google Scholar

18. Christensen LP, Kristiansen K. Isolation and quantification of a new tuliposide (tuliposide D) by HPLC in Alstroemeria. Contact Dermat 1995;33:188–92.10.1111/j.1600-0536.1995.tb00543.xSearch in Google Scholar

19. Christensen LP. Tuliposides from Alstroemeria revoluta. Phytochemistry 1995;38:1371–3.10.1016/0031-9422(94)00809-8Search in Google Scholar

20. Binutu OA, Cordell GA. Constituents of Afzelia bella stem bark. Phytochemistry 2001;56:827–30.10.1016/S0031-9422(01)00006-1Search in Google Scholar

21. Perry NB, Brennan NJ. Antimicrobial and cytotoxic phenolic glycoside esters from the New Zealand tree Toronia toru. J Nat Prod 1997;60:623–6.10.1021/np970013zSearch in Google Scholar PubMed

22. MacLeod JK, Rasmussen HB, Willis AC. A new glycoside antimicrobial agent from Persoonia linearis×pinifolia. J Nat Prod 1997;60:620–2.10.1021/np970006aSearch in Google Scholar PubMed

23. Yoshikawa K, Kinoshita H, Kan Y, Arihara S. Neolignans and phenylpropanoids from the rhizomes of Coptis japonica var. dissecta. Chem Pharm Bull 1995;43:578–81.10.1248/cpb.43.578Search in Google Scholar

24. Yoshikawa K, Kinoshita H, Arihara S. Non-basic components of Coptis rhizoma. II. Four new hemiterpenoid glucosides, two new phenylpropanoid glucosides and a new flavonoid glycoside from Coptis japonica var. dissecta. Nat Med 1997;51:244–8.Search in Google Scholar

25. Hiradate S, Morita S, Sugie H, Fujii Y, Harada J. Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry 2004;65:731–9.10.1016/j.phytochem.2004.01.010Search in Google Scholar PubMed

26. Park SH, Park KH, Oh MH, Kim HH, Choe KI, Kim SR, et al. Anti-oxidative and anti-inflammatory activities of caffeoyl hemiterpene glycosides from Spiraea prunifolia. Phytochemistry 2013;96:430–6.10.1016/j.phytochem.2013.09.017Search in Google Scholar PubMed

27. Jin J, Oskam PC, Karmee SK, Straathol AJ, Hanefeld U. MhyADH catalysed Michael addition of water and in situ oxidation. Chem Commun 2010;46:8588–90.10.1039/c0cc03229hSearch in Google Scholar PubMed

28. Jin J, Hanefeld U. The selective addition of water to C=C bonds; enzymes are the best chemists. Chem Commun 2011;47:2502–10.10.1039/c0cc04153jSearch in Google Scholar PubMed

29. Marasek-Ciolakowska A, Ramanna MS, Arens P, Van Tuyl JM. Breeding and cytogenetics in the genus Tulipa. Floricult Ornamental Biotechnol 2012;6:90–7.Search in Google Scholar

30. Wilford R. Tulips: Species and hybrids for the gardener. Portland: Timber Press, 2006.Search in Google Scholar

31. Shigetomi K, Shoji K, Mitsuhashi S, Ubukata M. The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure-activity relationship. Phytochemistry 2010;71:312–24.10.1016/j.phytochem.2009.10.008Search in Google Scholar PubMed

32. Nomura T, Hayashi E, Kawakami S, Ogita S, Kato Y. Environmentally benign process for the preparation of antimicrobial α-methylene-β-hydroxy-γ-butyrolactone (tulipalin B) from tulip biomass. Biosci Biotechnol Biochem 2015;79:25–35.10.1080/09168451.2014.946395Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2019-0176).


Received: 2019-10-05
Revised: 2019-12-18
Accepted: 2020-01-21
Published Online: 2020-02-24
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2019-0176/html
Scroll to top button