Skip to main content

Advertisement

Log in

Nitric Oxide Inhibition of Chain Lipid Peroxidation Initiated by Photodynamic Action in Membrane Environments

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Iron-catalyzed, free radical-mediated lipid peroxidation may play a major role in tumor cell killing by photodynamic therapy (PDT), particularly when membrane-localizing photosensitizers are employed. Many cancer cells exploit endogenous iNOS-generated NO for pro-survival/expansion purposes and for hyper-resistance to therapeutic modalities, including PDT. In addition to inhibiting the pro-oxidant activity of Fe(II) via nitrosylation, NO may intercept downstream lipid oxyl and peroxyl radicals, thereby acting as a chain-breaking antioxidant. We investigated this for the first time in the context of PDT by using POPC/Ch/PpIX (100:80:0.2 by mol) liposomes (LUVs) as a model system. Cholesterol (Ch or [14C]Ch) served as an in-situ peroxidation probe and protoporphyrin IX (PpIX) as photosensitizer. PpIX-sensitized lipid peroxidation was monitored by two analytical methods that we developed: HPLC-EC(Hg) and HPTLC-PI. 5α-hydroperoxy-Ch (5α-OOH) accumulated rapidly and linearly with irradiation time, indicating singlet oxygen (1O2) intermediacy. When ascorbate (AH) and trace lipophilic iron [Fe(HQ)3] were included, 7α/7β-hydroperoxy-Ch (7-OOH) accumulated exponentially, indicating progressively greater membrane-damaging chain lipid peroxidation. With AH/Fe(HQ)3 present, the NO donor SPNO had no effect on 5α-OOH formation, but dose-dependently inhibited 7-OOH formation due to NO interception of chain-carrying oxyl and peroxyl radicals. Similar results were obtained when cancer cells were PpIX/light-treated, using SPNO or activated macrophages as the NO source. These findings implicate chain lipid peroxidation in PDT-induced cytotoxicity and NO as a potent antagonist thereof by acting as a chain-breaking antioxidant. Thus, unless NO formation in aggressive tumors is suppressed, it can clearly compromise PDT efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PDT:

photodynamic therapy

NO:

nitric oxide

iNOS:

inducible nitric oxide synthase

Ch:

cholesterol

LOOH:

lipid hydroperoxide

5α-OOH:

5α-hydroperoxy cholesterol

7-OOH:

7α/7β-hydroperoxy cholesterol

ChOX:

oxidized cholesterol species

References

  1. Thomas, D. D., Liu, X., Kantrow, S. P., & Lancaster, Jr, J. R. (2001). The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proceedings of the National Academy of Sciences of the United States of America, 98, 355–360.

    Article  CAS  PubMed  Google Scholar 

  2. Knowles, R. G., & Moncada, S. (1994). Nitric oxide synthases in mammals. Biochemical Journal, 298, 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 357, 593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ridnour, L. A., Thomas, D. D., Donzelli, S., Espey, M. G., Roberts, D. D., & Wink, D. A., et al. (2006). The biphasic nature of nitric oxide responses in tumor biology. Antioxide Redox Signal, 8, 1329–1337.

    Article  CAS  Google Scholar 

  5. Thomas, D. D., Ridnour, L. A., Isenberg, J. S., Flores-Santana, W., Switzer, C. H., & Donzelli, S., et al. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radical Biology and Medicine, 45, 18–31.

    Article  CAS  PubMed  Google Scholar 

  6. Heinrich, T. A., da Silva, R. S., Miranda, K. M., Switzer, C. H., Wink, D. A., & Fukuto, J. M. (2013). Biological nitric oxide: signaling, chemistry and terminology. British Journal of Pharmacology, 169, 1417–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burke, A. J., Sullivan, F. J., Giles, F. J., & Glynn, S. A. (2013). The yin and yang of nitric oxide in cancer progression. Carcinogenesis, 34, 503–512.

    Article  CAS  PubMed  Google Scholar 

  8. Switzer, C. H., Glynn, S. A., Ridnour, L. A., Cheng, R. Y., Vitek, M. P., Ambs, S., & Wink, D. A. (2011). Nitric oxide and protein phosphatase 2A provide novel therapeutic opportunities in ER-negative breast cancer. Trends in Pharmacology Sciences, 32, 644–651.

    Article  CAS  Google Scholar 

  9. Fionda, C., Abruzzese, M. P., Santoni, A., & Cippitelli, M. (2016). Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species in cancer. Current Medicinal Chemistry, 23, 2618–2636.

    Article  CAS  PubMed  Google Scholar 

  10. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., & Freeman, B. A. (1994). Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives. Journal of Biological Chemistry, 269, 26066–26075.

    CAS  PubMed  Google Scholar 

  11. Rubbo, H., Parthasarathy, S., Barnes, S., Kirk, M., Kalyanaraman, B., & Freeman, B. A. (1995). Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Archives of Biochemistry and Biophysics, 324, 15–25.

    Article  CAS  PubMed  Google Scholar 

  12. Dougherty, T. J., Grindey, G. B., Fiel, R., Weishaupt, K. R., & Boyle, D. G. (1975). Photoradiation therapy II: Cure of animal tumors with hematoporphyrin and light. Journal of the National Cancer Institute, 55, 115–121.

    Article  CAS  PubMed  Google Scholar 

  13. Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., & Korbelik, M., et al. (1998). Photodynamic therapy. Journal of the National Cancer Institute, 90, 889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., & Gollnick, S. O., et al. (2011). Photodynamic therapy of cancer: an update. CA: A Cancer Journal for Clinicians, 61, 250–281.

    Google Scholar 

  15. Foote, C. S. (1968). Mechanisms of photosensitized oxidation. Science, 162, 963–970.

    Article  CAS  PubMed  Google Scholar 

  16. Spikes, J. D. (1989). Photosensitization. In K. C. Smith (Ed.), The Science of Photobiology ( pp. 79–110). New York, NY: Plenum Press.

    Chapter  Google Scholar 

  17. Girotti, A. W. (2001). Photosensitized oxidation of membrane lipids: reactions pathways, cytotoxic effects, and cytoprotective mechanisms. The Journal of Photochemistry and Photobiology B, 63, 103–113.

    Article  CAS  Google Scholar 

  18. Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30, 277–290.

    Article  CAS  PubMed  Google Scholar 

  19. Girotti, A. W. (1998). Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research, 39, 529–1542.

    Google Scholar 

  20. Kennedy, J. C., & Pottier, R. H. (1992). Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. The Journal of Photochemistry and Photobiology B, 14, 275–292.

    Article  CAS  Google Scholar 

  21. Peng, Q., Berg, K., Moan, J., Kongshaug, M., & Nesland, J. M. (1997). 5-aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochemistry and Photobiology, 65, 235–251.

    Article  CAS  PubMed  Google Scholar 

  22. Colditz, M. J., & Jeffree, R. L. (2012). Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies. Journal of Clinical Neuroscience, 19, 1471–1474.

    Article  CAS  PubMed  Google Scholar 

  23. Dolgachev, V., Oberley, L. W., Huang, T. T., Kraniak, J. M., Tainsky, M. A., Hanada, K., & Separovic, D. (2005). A role for manganese superoxide dismutase in apoptosis after photosensitization. Biochemical and Biophysical Research Communications, 332, 411–417.

    Article  CAS  PubMed  Google Scholar 

  24. Casas, A., Perotti, C., Fukuda, H., & del C Batlle, A. M. (2002). Photodynamic therapy of activated and resting lymphocytes and its antioxidant adaptive response. Lasers in Medical Science, 17, 42–50.

    Article  CAS  PubMed  Google Scholar 

  25. Kriska, T., Korytowski, W., & Girotti, A. W. (2002). Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPx4. Free Radical Biology and Medicine, 33, 1389–1402.

    Article  CAS  PubMed  Google Scholar 

  26. Palasuberniam, X., Yang, D., Kraus, P., Jones, K. A., Myers, B., & Chen, B. (2015). ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Scientific Reports, 5, 13298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henderson, B. W., Sitnik, T. M., & Vaughan, V. A. (1999). Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate-dependent. Photochemistry and Photobiology, 70, 64–71.

    Article  CAS  PubMed  Google Scholar 

  28. Korbelik, M., Parkins, C. S., Shibuya, H., Cecic, I., Stratford, R. M. L., & Chaplin, D. J. (2000). Nitric oxide production by tumor tissue: impact on the response to photodynamic therapy. British Journal of Cancer, 82, 1835–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reeves, K. L., Reeve, M. W. R., & Brown, N. J. (2010). The role of nitric oxide in the treatment of tumors with aminolaevulinic acid-induced photodynamic therapy. The Journal of Photochemistry and Photobiology B: Biology, 101, 224–232.

    Article  CAS  Google Scholar 

  30. Padmaja, S., & Huie, R. E. (1993). The reaction of nitric oxide with organic peroxyl radicals. Biochemical and Biophysical Research Communications, 195, 539–544.

    Article  CAS  PubMed  Google Scholar 

  31. Korytowski, W., Zareba, M., & Girotti, A. W. (2000). Nitric oxide inhibition of free radical-mediated cholesterol peroxidation in liposomal membranes. Biochemistry, 39, 6918–6928.

    Article  CAS  PubMed  Google Scholar 

  32. Korytowski, W., Zareba, M., & Girotti, A. W. (2000). Inhibition of free radical-mediated cholesterol peroxidation by diazeniumdiolate-derived nitric oxide: effect of release rate on mechanism of action in a membrane system. Chemical Research in Toxicology, 13, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  33. Korytowski, W., Geiger, P. G., & Girotti, A. W. (1995). High-performance liquid chromatography with mercury cathode electrochemical detection: application to lipid hydroperoxide analysis. Journal of Chromatography B, 670, 189–197.

    Article  CAS  Google Scholar 

  34. Korytowski, W., Geiger, P. G., & Girotti, A. W. (1999). Lipid hydroperoxide analysis by high performance liquid chromatography with mercury cathode electrochemical detection. Methods in Enzymology, 300, 23–33.

    Article  CAS  PubMed  Google Scholar 

  35. Niziolek, M., Korytowski, W., & Girotti, A. W. (2003). Chain-breaking antioxidant and cytoprotective action of nitric oxide on photodynamically stressed tumor cells. Photochemistry and Photobiology, 78, 262–270.

    Article  CAS  PubMed  Google Scholar 

  36. Niziolek, M., Korytowski, W., & Girotti, A. W. (2003). Nitric oxide inhibition of free radical-mediated lipid peroxidation in photodynamically treated membranes and cells. Free Radical Biology and Medicine, 34, 997–1005.

    Article  CAS  PubMed  Google Scholar 

  37. Niziolek, M., Korytowski, W., & Girotti, A. W. (2005). Self-sensitized photodegradation of membrane-bound protoporphyrin mediated by chain lipid peroxidation: inhibition by nitric oxide with sustained singlet oxygen damage. Photochemistry and Photobiology, 81, 299–305.

    Article  CAS  PubMed  Google Scholar 

  38. Korytowski, W., Wrona, M., & Girotti, A. W. (1999). Radiolabeled cholesterol as a reporter for assessing one-electron turnover of lipid hydroperoxides. Analytical Biochemistry, 270, 123–132.

    Article  CAS  PubMed  Google Scholar 

  39. Korytowski, W., & Girotti, A. W. (2016). cholesterol as a natural probe for free radical-mediated lipid peroxidation in biological membranes and lipoproteins. Journal of Chromatography B, 1019, 202–209.

    Article  CAS  Google Scholar 

  40. Niziolek, M., Korytowski, W., & Girotti, A. W. (2006). Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radical Biology and Medicine, 40, 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  41. Niziolek-Kierecka, M., Korytowski, W., & Girotti, A. W. (2007). Tumor cell hyperresistance to photodynamic killing arising from nitric oxide preconditioning. SPIE, 6427, 642705.

    Google Scholar 

  42. Fraix, A., & Sortino, S. (2018). Combination of PDT photosensitizers with NO photodonors. Photochemical and Photobiological Sciences, 17, 1709–1727.

    Article  CAS  PubMed  Google Scholar 

  43. Heinrich, T. A., Tedesco, A. C., Fukuto, J. M., & da Silva, R. S. (2014). Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment. Dalton Transactions, 43, 4021–4025.

    Article  CAS  PubMed  Google Scholar 

  44. Bhowmick, R., & Girotti, A. W. (2010). Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biology and Medicine, 48, 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  45. Bhowmick, R., & Girotti, A. W. (2011). Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge. Photochemistry and Photobiology, 87, 378–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhowmick, R., & Girotti, A. W. (2014). Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Letters, 343, 115–122.

    Article  CAS  PubMed  Google Scholar 

  47. Fahey, J. M., & Girotti, A. W. (2015). Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide, 49, 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fahey, J. M., Emmer, J. V., Korytowski, W., & Girotti, A. W. (2016). Antagonistic effects of endogenous nitric oxide in a glioblastoma photodynamic therapy model. Photochemistry and Photobiology, 92, 842–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fahey, J. M., & Girotti, A. W. (2017). Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: improved outcome with NOS2 inhibitors. Nitric Oxide, 62, 52–61.

    Article  CAS  PubMed  Google Scholar 

  50. Bazak, J., Fahey, J. M., Wawak, K., Korytowski, W., & Girotti, A. W. (2017). Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: role of nitric oxide produced by targeted cells. Free Radical Biology and Medicine, 102, 111–121.

    Article  CAS  PubMed  Google Scholar 

  51. Bazak, J., Korytowski, W., & Girotti, A. W. (2019). Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy. Cancers, 11, 1674.

    Article  CAS  PubMed Central  Google Scholar 

  52. Yakovlev, V. A. (2015). Role of nitric oxide in the radiation-induced bystander effect. Redox Biology, 6, 396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kriska, T., Levchenko, V. V., Korytowski, W., Atshaves, B. P., Schroeder, F., & Girotti, A. W. (2006). Intracellular dissemination of peroxidative stress: Internalization, transport, and lethal targeting of a cholesterol hydroperoxide species by sterol carrier protein-2-overexpressing hepatoma cells. Journal of Biological Chemistry, 281, 23643–23651.

    Article  CAS  PubMed  Google Scholar 

  54. Vannini, F., Kashfi, K., & Nath, N. (2015). The dual role of iNOS in cancer. Redox Biology, 6, 334–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kamm, A., Przychodzen, P., Kuban-Jankowsha, A., Jacewicz, D., Dabrowska, A. M., & Nussberger, S., et al. (2019). Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide, 93, 102–114.

    Article  CAS  PubMed  Google Scholar 

  56. Fahey, J. M., Stancill, J. S., Smith, B. C., & Girotti, A. W. (2018). Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation therof by BET bromodomain inhibitor JQ1. Journal of Biological Chemistry, 393, 5345–5359.

    Article  Google Scholar 

  57. Iyer, A. K., Rojanasakul, Y., & Azad, N. (2014). Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide, 42, 9–18.

    Article  CAS  PubMed  Google Scholar 

  58. Salimian Rizi, B., Achreja, A., & Nagrath, D. (2017). Nitric oxide: the forgotten child of tumor metabolism. Trends Cancer, 3, 659–672.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in the authors’ laboratories were supported by USPHS Grants CA72630, TW001386, and CA70823 (to AWG) and by Polish National Center for Science Grants NCN-2014/13/B/NZ3/00833 and 2017/27/B/NZ5/02620 (to WK). We thank Magdalena Niziolek, Mariusz Zareba, Peter Geiger, Andrew Vila, Vlad Levchenko, Tamas Kriska, and Jerzy Bazak for their many valuable contributions to the research supported by these grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert W. Girotti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girotti, A.W., Korytowski, W. Nitric Oxide Inhibition of Chain Lipid Peroxidation Initiated by Photodynamic Action in Membrane Environments. Cell Biochem Biophys 78, 149–156 (2020). https://doi.org/10.1007/s12013-020-00909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00909-2

Keywords

Navigation