Skip to main content
Log in

Failure of scattering to standing waves for a Schrödinger equation with long-range nonlinearity on star graph

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the Schrödinger equation with power type long-range nonlinearity on star graph. Under a general boundary condition at the vertex, including Kirchhoff, Dirichlet, \(\delta \), or \(\delta '\) boundary condition, we show that the non-trivial global solution does not scatter to standing waves. Our proof is based on the argument by Murphy and Nakanishi (Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations), who treated the long-range nonlinear Schrödinger equation with a general potential in the Euclidean space, in order to consider general boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riccardo Adami, Claudio Cacciapuoti, Domenico Finco, Diego Noja, Fast solitons on star graphs, Rev. Math. Phys. 23 (2011), no. 4, 409–451.

    Article  MathSciNet  Google Scholar 

  2. Riccardo Adami, Claudio Cacciapuoti, Domenico Finco, Diego Noja, Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations 257 (2014), no. 10, 3738–3777.

    Article  MathSciNet  Google Scholar 

  3. Jaime Angulo Pava, Nataliia Goloshchapova, Extension theoryapproach in the stability of the standing waves for the NLS equationwith point interactions on a star graph, Adv. DifferentialEquations 23 (2018), no. 11-12, 793–846.

    MATH  Google Scholar 

  4. Jacqueline E. Barab, Nonexistence of asymptotically freesolutions for a nonlinear Schrödinger equation, J. Math. Phys.25 (1984), no. 11, 3270–3273.

    Article  MathSciNet  Google Scholar 

  5. Thierry Cazenave, Semilinear Schrödinger Equations,Courant Lecture Notes in Mathematics, vol. 10, American MathematicalSociety, Courant Institute of Mathematical Sciences, 2003.

  6. Liliana Esquivel, Nakao Hayashi, Elena I. Kaikina, Inhomogeneous Dirichlet-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques, J. Differential Equations 266 (2019), no. 2-3, 1121–1152.

    Article  MathSciNet  Google Scholar 

  7. Jean Ginibre, Tohru Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension\(n\ge 2\), Comm. Math. Phys. 151 (1993), no. 3, 619–645.

  8. Robert T. Glassey, Asymptotic behavior of solutions tocertain nonlinear Schrödinger-Hartree equations, Comm. Math.Phys. 53 (1977), no. 1, 9–18.

    Article  MathSciNet  Google Scholar 

  9. Nataliia Goloshchapova, Masahito Ohta, Blow-up and strong instability of standing waves for the NLS-\(\delta \)equation on a star graph, preprint, arXiv:1908.07122.

  10. Andreea Grecu, Liviu I. Ignat, The Schrödinger equation on a star-shaped graph under general coupling conditions, J. Phys. A 52 (2019), no. 3, 035202, 26 pp.

  11. Nakao Hayashi, Pavel I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), no. 2, 369–389.

    Article  MathSciNet  Google Scholar 

  12. Adilbek Kairzhan, Orbital instability of standing waves for NLS equation on star graphs, Proc. Amer. Math. Soc. 147 (2019), no. 7, 2911–2924.

    Article  MathSciNet  Google Scholar 

  13. Vadim Kostrykin, Robert Schrader, Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications, 201–225, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006.

  14. Satoshi Masaki, Jason Murphy, Jun-ichi Segata, Modified scattering for the 1d cubic NLS with a repulsive delta potential, preprint, arXiv:1708.00392.

  15. Jason Murphy, Kenji Nakanishi, Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. preprint, arXiv:1906.01802.

  16. Tohru Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), no. 3, 479–493.

    Article  MathSciNet  Google Scholar 

  17. Michael Reed, Barry Simon, “Methods of modern mathematical physics. III. Scattering theory”, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. xv+463 pp.

  18. Jun-Ichi Segata, Final state problem for the cubic nonlinear Schrödinger equation with repulsive delta potential, Comm. Partial Differential Equations 40 (2015), no. 2, 309–328.

    Article  MathSciNet  Google Scholar 

  19. Walter. A. Strauss, Nonlinear scattering theory, in “Scattering theory in mathematical physics”, 53–78, Reidel, Dordrecht, 1974.

    Google Scholar 

  20. Yoshio Tsutsumi, Kenji Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 186–188.

  21. Kouki Yoshinaga, Master Thesis, Graduate School of Information Science and Technology, Osaka University, (2018), written in Japanese.

Download references

Acknowledgements

The authors would like to express deep appreciation to Dr. Tomoyuki Tanaka for introducing the papers related to NLS on the star graph. The second author is supported by JSPS KAKENHI Grant-in-Aid for Early-Career Scientists JP18K13444 and the third author is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) JP17K14218 and, partially, for Scientific Research (B) JP17H02854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Inui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Weak solution

A Weak solution

In the appendix, we discuss that an \(L^2\)-solution is a weak solution. We say that a pair (qr) is admissible if \(2/q = 1/2-1/r\) and \(2\le q,r \le \infty \). We define the \(L^2\)-solution (or the Strichartz class solution) as follows.

Definition 1

Let I be a time interval containing 0. We say that u is an \(L^2\)-solution (or a Strichartz class solution) to (NLS) on I if \(u \in C(I:L^2({\mathcal {G}})) \cap \bigcap _{(q,r):\text {admissible}} L^q(I:L^r({\mathcal {G}}))\) and u satisfies

$$\begin{aligned} u(t)=e^{it\varDelta _{M}} u_0 + i \lambda \int _{0}^{t} e^{i(t-s)\varDelta _{M}} (|u|^p u)(s) ds \end{aligned}$$

for all \(t \in I\) and almost all \(x \in {\mathcal {G}}\).

A unique \(L^2\)-solution to (NLS) exists if \(u_0 \in L^2({\mathcal {G}})\) by Grecu and Ignat [10]. They also showed \(L^2\)-conservation law, i.e., \(\left\| u(t) \right\| _{L^2({\mathcal {G}})}=\left\| u_0 \right\| _{L^2({\mathcal {G}})}\), and thus the solution is global. The \(L^2\)-solution is a weak solution in the following sense.

Lemma 11

If u is an \(L^2\)-solution and \(\varphi \in \{f \in H^2((0,\infty )) \cap C([0,\infty )) : f(0)=0\}\), we have

$$\begin{aligned}&i \left\langle u(\tau ) , \varphi \right\rangle _{j} - i \left\langle u_0 , \varphi \right\rangle _{j} + \int _{0}^{\tau } \left\langle u , \varphi '' \right\rangle _{j} dt + \int _{0}^{\tau } u_j(t,0+) \overline{\partial _x \varphi (0+)} dt\nonumber \\&\qquad =-\lambda \int _{0}^{\tau } \left\langle |u|^p u , \varphi \right\rangle _{j} dt. \end{aligned}$$
(A.1)

Proof

Let \(H=-\varDelta _{M}\). We define \(u_\varepsilon :=(I+\varepsilon ^2 H )^{-1}u\), where u is the \(L^2\)-solution. Then, from the argument in [10], it holds that \(u_{\varepsilon } \in C(I:{\mathscr {D}}(H)) \cap W^{1,1,}(I:L^2({\mathcal {G}}))\) and

$$\begin{aligned} {\left\{ \begin{array}{ll} i \partial _t u_{\varepsilon } = Hu_{\varepsilon } - (I+\varepsilon ^2 H)^{-1} F(u), \\ u_{\varepsilon }(0)=(I+\varepsilon ^2 H )^{-1}u_{0}, \end{array}\right. } \end{aligned}$$

where \(F(u)=\lambda |u|^p u\) and \((I+\varepsilon ^2 H )^{-1}F(u) \in L^1(I:{\mathscr {D}}(H))\). Multiplying the equation by the complex conjugate of \(\varphi \in \{f \in H^2((0,\infty )) \cap C([0,\infty )) : f(0)=0\}\) and integrating on an edge \(e_j\), it follows from the integration by parts that

$$\begin{aligned} i \left\langle \partial _t u_{\varepsilon } , \varphi \right\rangle _{j} =- \left\langle u_{\varepsilon } , \varphi '' \right\rangle _{j} +u_{\varepsilon j}(t,0+) \overline{\partial _x \varphi (0+)} - \left\langle (I+\varepsilon ^2 H)^{-1} F(u) , \varphi \right\rangle _{j}. \end{aligned}$$

Integrating this on \([0,\tau )\) for \(\tau \in I\), we obtain

$$\begin{aligned} i \left\langle u_{\varepsilon }(\tau ) , \varphi \right\rangle _{j} - \left\langle u_{\varepsilon }(0) , \varphi \right\rangle _{j} =&-\int _{0}^{\tau } \left\langle u_{\varepsilon } , \varphi '' \right\rangle _{j}dt +\int _{0}^{\tau } u_{\varepsilon j}(t,0+) \overline{\partial _x \varphi (0+)} dt \\&- \int _{0}^{\tau } \left\langle (I+\varepsilon ^2 H)^{-1} F(u) , \varphi \right\rangle _{j} dt. \end{aligned}$$

By the argument in [10], taking \(\varepsilon \rightarrow 0\), we have (A.1). \(\square \)

From this lemma, we get the following lemma, which is one of keys to show Theorem 1 (see Sect. 2.3).

Lemma 12

Let u be an \(L^2\)-solution and \(w=e^{it\varDelta _{D}}\varphi \), where \(\varphi \in \{f \in H^2({\mathcal {G}}) : f(0)=0\}\). Then we have

$$\begin{aligned} i \left\langle u(\tau ) , w(\tau ) \right\rangle _{j} - i \left\langle u_0 , \varphi \right\rangle _{j}+ \int _{0}^{\tau } u_j(t,0+) \overline{\partial _x w (t,0+)} dt =-\lambda \int _{0}^{\tau } \left\langle |u|^p u , w \right\rangle _{j} dt. \end{aligned}$$

Proof

Multiplying the equation by the complex conjugate of w and integrating on an edge \(e_j\), it follows from the argument in the proof of Lemma 11 that

$$\begin{aligned} i \left\langle \partial _t u_{\varepsilon } , w \right\rangle _{j} = -\left\langle u_{\varepsilon } , w'' \right\rangle _{j} +u_{\varepsilon j}(t,0+) \overline{\partial _x w (t,0+)} - \left\langle (I+\varepsilon ^2 H)^{-1} F(u) , w \right\rangle _{j}, \end{aligned}$$

where \(u_{\varepsilon }\) is as in the proof and note that \(w_j (t) \in \{f \in H^2((0,\infty )) \cap C([0,\infty )) : f(0)=0\}\). Since w is a solution of

$$\begin{aligned} i\partial _t w + w''=0 \text { and } w(t,0)=0, \end{aligned}$$

we obtain

$$\begin{aligned} i \partial _t \left\langle u_{\varepsilon } , w \right\rangle _{j} = u_{\varepsilon j}(t,0+) \overline{\partial _x w (t,0+)} - \left\langle (I+\varepsilon ^2 H)^{-1} F(u) , w \right\rangle _{j}. \end{aligned}$$

Integrating this on \([0,\tau )\) for \(\tau \in I\) and taking \(\varepsilon \rightarrow 0\), this completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, K., Inui, T. & Mizutani, H. Failure of scattering to standing waves for a Schrödinger equation with long-range nonlinearity on star graph. J. Evol. Equ. 21, 297–312 (2021). https://doi.org/10.1007/s00028-020-00579-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00579-w

Keywords

Mathematics Subject Classification

Navigation