Skip to main content
Log in

Performance, digestibility, microbial protein synthesis, and body composition of Brangus x Zebu steers on tropical pasture receiving supplementation

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The use of additional supplement can affect ruminant performance by increasing the animal weight gain and maximizing profits from the activity. Thus, the objective of this study was to evaluate the influence of protein-energy supplementation on microbial synthesis, animal performance, nutrient digestibility, and body composition of Brangus x Zebu steers on pasture. The experiment lasted 160 days and included 36 animals divided into two groups; 18 steers received protein-energy supplementation (PES), and the other 18 received non-supplementation (NPES). Individual pasture intake and nutrient digestibility were estimated using the double indicator technique—chromium oxide and lignin in potassium permanganate. Spot urine samples were collected from 36 animals to determine creatinine, allantoin, and uric acid concentrations. All animals were slaughtered at the end of the experiment to evaluate body composition. There was increase in intake (P < 0.001) and dry matter digestibility (P = 0.01); it resulted in higher animal weight gain (P < 0.001) receiving supplementation. However, there was no difference (P > 0.05) in pasture nutrient intake between treatments. Supplementation increased microbial nitrogen (P < 0.001). For body composition, the model identity test that was applied showed no difference (P > 0.05) between the models, so it was adopted a common equation for both treatments. There was no difference (P > 0.05) for body composition between treatments. Therefore, the use of protein-energy supplementation for steers on pasture allowed higher microbial protein synthesis and better utilization of nutrients, which resulted in better animal performance. The use of protein-energy supplementation at 0.6% BW did not alter the carcass composition of Brangus x Zebu steers. However, it recommends protein-energy supplementation in pasture systems during the rainy period or using an irrigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agricultural Research Council (ARC), 1980. The nutrient requirements of ruminats livestock. London: Commonwealth agricultural Bureaux.

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC), 1990. Official method of analysis. 15th ed. Washington, DC, USA: Association of Official Analytical Chemists.

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC), 2002. Official methods of analysis. 16th ed. Arlington, VA, USA: Association of Official Analytical Chemists.

    Google Scholar 

  • Batista, E. D., E. Detmann, E. C. Titgemeyer, S. C. Valadares Filho, R. F. D. Valadares, L. L. Prates, L. N. Rennó, and M. F. Paulino. 2016. Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage. Journal of Animal Science, 94, 201-216.

    Article  CAS  Google Scholar 

  • Berg R.T. and Butterfield, R.M. 1976. New concepts of cattle growth. 1st ed. Sydney: Sydney University.

    Google Scholar 

  • Carstens, G.E., Johnson, D.E., Ellenberger, M.A. and Tatum, J.D. 1991. Physical and chemical components of the empty body during compensatory growth in beef steers. Journal of Animal Science, 69(8), 3251-64.

    Article  CAS  Google Scholar 

  • Chen, X.B. and Gomes, M.J. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives – an overview of technical details. International feed Research Unit. Aberdeen: Rowett Research Institute (Occasional publication).

  • Chizzotti, M.L., Valadares Filho, S.C., Valadares, R.F.D., Chizzotti, F.H.M., Marcondes, M.I. and Fonseca, M.A. 2007. Consumo, digestibilidade e excreção de ureia e derivados de purinas em vacas de diferentes níveis de produção de leite. Revista Brasileira de Zootecnia, 36, 138-146.

    Article  Google Scholar 

  • Clark, J.H., Klusmeyer, T.H. and Cameron, M.R. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science, 75, 2304-2323.

    Article  CAS  Google Scholar 

  • Costa, V. A. C., E. Detmann, M. F. Paulino, S. C. V. Valadares Filho, L. T. Henriques, and I. P. C. Carvalho. 2011. Total and partial digestibility and nitrogen balance in grazing cattle supplemented with non-protein and, or true protein nitrogen during the rainy season. Revista Brasileira de Zootecnia, 40, 2815-2826.

  • Detmann, E., Paulino, M.F., Zervoudakis, J.T., Valadares Filho, S.C., Euclydes, R.F., Lana, R.P. and Queiroz, D.S. 2001. Cromo e indicadores internos na determinação do consumo de novilhos mestiços, suplementados a pasto. Revista Brasileira de Zootecnia, 30, 1340-1349.

    Article  Google Scholar 

  • Detmann, E., Paulino, M.F., Valadares Filho, S.C., Cecon, P.R., Zervoudakis, J.T., Cabral, L.S., Gonçalves, L.C. and Valadares, R.F.D. 2005. Níveis de proteína em suplementos para terminação de bovinos em pastejo durante período de transição seca/águas: Digestibilidade aparente e parâmetros do metabolismo ruminal e dos compostos nitrogenados. Revista Brasileira de Zootecnia, 34, 1380-1391.

    Article  Google Scholar 

  • Detmann, E., Valente, E.E.L., Batista, E.D. and Huhtanen, P., 2014a. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livestock Science, 162, 141–153.

    Article  Google Scholar 

  • Detmann, E., Paulino, M.F., Valadares Filho, S.C. and Huhtanen, P. 2014b. Nutritional aspects applied to grazing cattle in the tropics: a review based on Brazilian results. Semina: Ciências Agrárias, Londrina, 35(4), 2829-2854.

    CAS  Google Scholar 

  • Fieser, B.G. and Vazant, E.S. 2004. Interactions between supplement energy source and tall fescue hay maturity on forage utilization by beef steers. Journal of Animal Science, 82, 307-318.

    Article  CAS  Google Scholar 

  • Fontes, C.A.A., Oliveira, R.C., Erbesdobler, E.D. and Queiroz, D.S., 2005. Use of comparative slaughter to set maintenance energy requirements of beef cattle grazing elephant grass: description of methodology and results. Revista Brasileira de Zootecnia, 34, 1721–1729.

    Article  Google Scholar 

  • Geay, Y. 1984. Energy and protein utilization in growing cattle. Journal of Animal Science, 58, 766-778.

    Article  CAS  Google Scholar 

  • Gomes, R.S., Oliveira, T.S., Pereira, J.C., Vieira, R.A.M., Henrique, D.S., Fernandes, A.M. and Leonel, F.P. 2016. Performance and metabolite profile of dairy cows fed tropical grasses and concentrates containing crude protein with low or high degradability. Revista Brasileira de Zootecnia. 45(9), 572-580.

    Article  Google Scholar 

  • Graybill, F.A. 1976. Theory and application of the linear model. 1st ed. North Scituate: Duxburg Press, USA.

    Google Scholar 

  • Greenwood, P., Clayton, E. and Bell, A. 2017. Development programming and beef production. Animal Frontiers, 7, 38-47.

    Article  Google Scholar 

  • Lazzarini, I., Detmann, E., Valadares Filho, S.C., Paulino, M.F., Batista, E.D., Rufino, L.M.A., Reis, W.L.S. and Franco, M.O. 2016. Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation. Asian-Australisian Journal of Animal Science, 29, 1120-1128.

    Article  CAS  Google Scholar 

  • Leng, R.A. and Nolan, J.V. 1982. Nitrogen Metabolism in the Rumen. Journal of Dairy Science, 67, 1072-1089.

    Article  Google Scholar 

  • Lofgreen, G.P. and Garrett, W.N. 1968. A system for expressing net energy requeriments and feed values for growing and finishing beef cattle. Journal of Animal Science, 27, 793- 806.

    Article  Google Scholar 

  • Kock, S.W. and Preston, R.L. 1979. Estimation of bovine carcass composition by the urea dilution technique. Journal of Animal Science, 48, 19-327.

    Article  Google Scholar 

  • Naumann, H.D., Tedeschi, L.O., Zeller, W. E. and Huntley, N.F. 2017. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 46(12), 929-949.

    Article  Google Scholar 

  • Marcondes, M.I., Valadares Filho, S.C., Paulino, P.V.R., Valadares, R.F.D., Paulino, M.F., Nascimento, F.B. and Fonseca, M.A. 2009. Exigências nutricionais de proteína, energia e macrominerais de bovinos Nelore de três classes sexuais. Revista Brasileira de Zootecnia, 38(8), 1587-1596.

    Article  Google Scholar 

  • McLennan, S. R., Bolam, M. J., Kidd, J. F., Chandra, K. A. and Poppi, D. P. 2017. Responses to various protein and energy supplements by cattle fed low-quality tropical hay. 1. Comparison of response surfaces for young steers. Animal Production Science, 57, 473-488.

    Article  CAS  Google Scholar 

  • Minson, D.J. 1990. Forage in ruminant nutrition. San Diego: Academic Press.

    Google Scholar 

  • Muniz, E. B., Mizubuti, I. Y., Pereira, E. S., Pimentel, P. G., Ribeiro, E. L. A., Pinto, A. P. 2012. Cinética ruminal da fração fibrosa de volumosos para ruminantes. Revista Ciência Agronômica, 43, 604–610.

    Article  Google Scholar 

  • Owens, F.N. and Zinn, R. 1988. Protein metabolism of ruminant animals. In: Church, D.C. (Ed.) The ruminant animal: digestive physiology and nutrition. Prentice Hall: New Jersey – USA.

    Google Scholar 

  • Poppi, D.P. and Mclennan, S.R. 1995. Protein and energy utilization by ruminants at pasture. Journal of Animal Science, 73(1), 278-290.

    Article  CAS  Google Scholar 

  • Rocha, T.C., Fontes, C.A.A., Silva, R.T.S., Processi, E.F., Valle, F.R.A.F., Lombardi, C.T., Oliveira, R.L. and Bezerra, L.R. 2016. Performance, nitrogen balance and microbial efficiency of beef cattle under concentrate supplementation strategies in intensive management of a tropical pasture. Tropical Animal Health and Production, 48, 673–681.

    Article  Google Scholar 

  • Røjen, B. A., Theil, P. K., and Kristensen, N. B. 2011. Effects of nitrogen supply on inter-organ fluxes of urea-N and renal urea-N kinetics in lactating Holstein cows. Journal of Dairy Science, 94, 2532–2544.

    Article  Google Scholar 

  • Russel, J.B., O’Connor, J.D., Fox, D.G., Van Soest, P.J. and Sniffen, C.J. 1992. A Net carbohydrate and protein system for evaluation cattle diets: I. Ruminal Fermentation. Journal of Animal Science, 70:3551-3561.

    Google Scholar 

  • Silva, D.J. and Queiroz, A.C., 2002. Análise de alimentos (métodos químicos e biológicos). Viçosa: Universidade Federal de Viçosa.

    Google Scholar 

  • St-Pierre, N. R. 2007. Meta-analyses of experimental data in the animal sciences. Revista Brasileira de Zootecnia. 36, 343-358.

    Article  Google Scholar 

  • Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S. C. and Clayton, M.K. 1999. Effect of replacing alfafa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science, 82, 2686-2696.

    Article  CAS  Google Scholar 

  • Valente, E.E.L., Paulino, M.F., Barros, L.V., Almeida, D.M., Martins, L.S. and Cabral, C.H.A. 2014. Nutritional evaluation of young bulls on tropical pasture receiving supplements with different protein:carbohydrate ratios. Asian-Australisian Journal of Animal Science, 27, 1452-1460.

    Article  CAS  Google Scholar 

  • Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2.ed. Ithaca: Cornell University Press.

  • Verbic, J.; Chen, X.B.; Macleod, N.A. and Ørskov, E.R. 1990. Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers. Journal of Agricultural Science, 114, 243-248.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeu S. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval:

This study was performed in accordance with the recommendations found in the National Council Guide for Animal Experiments Control, and it was approved by the Ethics Committee for Animal Experimentation of the Universidade Estadual do Norte Fluminense Darcy Ribeiro, State of Rio de Janeiro, Brazil (168–2012 protocol).

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, F.R.A.F., Fontes, C.A.A., Fernandes, A.M. et al. Performance, digestibility, microbial protein synthesis, and body composition of Brangus x Zebu steers on tropical pasture receiving supplementation. Trop Anim Health Prod 52, 2491–2498 (2020). https://doi.org/10.1007/s11250-020-02278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02278-7

Keywords

Navigation