Skip to main content
Log in

Probiotic Potential of Lactobacillus paracasei CT12 Isolated from Water Kefir Grains (Tibicos)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The water kefir grains are a multi-species starter culture used to produce fermented beverages of sucrose solution with or without fruit extracts. The water kefir grains are known in Mexico as Tibicos, which are mainly used to produce Tepache, a traditional Mexican drink made by fermenting pineapple peel. The microbiota of Tibicos mainly include lactic acid bacteria (LAB) and since most probiotics belong to this group, Tibicos may represent a potential source of probiotic bacteria. Moreover, several bacteria isolated from kefir samples have been recognized as probiotics. Hence, the aim of this study was to assess the probiotic properties of a Lactobacillus strain isolated from Tibicos. The isolated, designed as CT12, was identified as Lactobacillus paracasei by sequencing 16S RNA gene. L. paracasei CT12 showed a survival rate of ca. 57% and 40% following simulated gastric and intestinal digestion, respectively. Besides, the strain was sensitive to ampicillin and erythromycin, and exhibited hydrophobicity (97–99%), autoaggregation (ca. 70%) and mucin adhesion properties (up to 90%), while no possessed haemolytic capacity. Furthermore, its cell-free supernatant displayed relevant antimicrobial, antifungal and antioxidant capacity. Hence, L. paracasei CT12 appears to possess a potential probiotic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz G (2017) Traditional fermented beverages from Mexico as a potential probiotic source. Ann Microbiol 67(9):577–586. https://doi.org/10.1007/s13213-017-1290-2

    Article  CAS  Google Scholar 

  2. de la Fuente-Salcido NM, Castañeda-Ramírez JC, García-Almendárez BE, Bideshi DK, Salcedo-Hernández R, Barboza-Corona JE (2015) Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México. Food Sci Nutr 3(5):434–442. https://doi.org/10.1002/fsn3.236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Thombre R, Joshi S (2017) Industrial production and applications of yeast and yeast products. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. Apple Academic Press, Oakville, pp 59–80

    Chapter  Google Scholar 

  4. Romero-Luna HE, Hernández-Sánchez H, Ribas-Aparicio RM, Cauich-Sánchez PI, Dávila-Ortiz G (2019) Evaluation of the probiotic potential of Saccharomyces cerevisiae Strain (C41) isolated from Tibicos by in vitro studies. Probiotics Antimicrob Proteins 11(3):794–800. https://doi.org/10.1007/s12602-018-9471-2

    Article  PubMed  CAS  Google Scholar 

  5. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health related applications. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Castro-Rodríguez D, Hernández-Sánchez H, Yáñez-Fernández J (2015) Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel of Agave salmiana. Probiotics Antimicrob Proteins 7(2):107–117. https://doi.org/10.1007/s12602-015-9187-5

    Article  CAS  Google Scholar 

  7. Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123. https://doi.org/10.1016/j.anaerobe.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  8. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11(6):217–218. https://doi.org/10.1016/S0168-9525(00)89052-6

    Article  PubMed  CAS  Google Scholar 

  9. Relman D (1993) Universal bacterial 16S rDNA amplification and sequencing. Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 489–495

    Google Scholar 

  10. Gil-Rodríguez A, Carrascosa A, Requena T (2015) Yeasts in foods and beverages: in vitro characterization of probiotic traits. LWT-Food Sci Technol 64(2):1156–1162. https://doi.org/10.1016/j.lwt.2015.07.042

    Article  CAS  Google Scholar 

  11. Jonsson H, Ström E, Roos S (2001) Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol Lett 204(1):19–22. https://doi.org/10.1111/j.1574-6968.2001.tb10855.x

    Article  PubMed  CAS  Google Scholar 

  12. Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005

    Article  PubMed  CAS  Google Scholar 

  13. Blandino G, Milazzo I, Fazio D (2008) Antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. Microb Ecol Health Dis 20(4):199–203. https://doi.org/10.1080/08910600802408111

    Article  CAS  Google Scholar 

  14. Jeronymo-Ceneviva A, de Paula A, Silva L, Todorov S, Franco B, Penna A (2014) Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. Probiotics Antimicrob Proteins 6(3–4):141–156. https://doi.org/10.1007/s12602-014-9166-2

    Article  PubMed  CAS  Google Scholar 

  15. Charteris W, Kelly P, Morelli L, Collins J (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61(12):1636–1643. https://doi.org/10.4315/0362-028X-61.12.1636

    Article  PubMed  CAS  Google Scholar 

  16. Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D (2016) Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol 7:464. https://doi.org/10.3389/fmicb.2016.00464

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García HS (2014) Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol 173:30–35. https://doi.org/10.1016/j.ijfoodmicro.2013.12.016

    Article  PubMed  CAS  Google Scholar 

  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  PubMed  CAS  Google Scholar 

  19. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626. https://doi.org/10.1021/jf010586o

    Article  PubMed  CAS  Google Scholar 

  20. Takebayashi J, Chen J, Tai A (2010) A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. In: Armstrong D (ed) Advanced protocols in oxidative stress II. Methods in Molecular Biology (Methods and Protocols), vol 594. Humana Press, Totowa, NJ, pp 287–296. https://doi.org/10.1007/978-1-60761-411-1

    Chapter  Google Scholar 

  21. Silva MS, Ramos CL, González-Ávila M, Gschaedler A, Arrizon J, Schwan RF, Dias DR (2017) Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino- A typical Mexican beverage. LWT-Food Sci Technol 86:227–232. https://doi.org/10.1016/j.lwt.2017.08.009

    Article  CAS  Google Scholar 

  22. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr 137(3):850S–853S. https://doi.org/10.1093/jn/137.3.850S

    Article  PubMed  CAS  Google Scholar 

  23. Laureys D, De Vuyst L (2017) The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process. J Appl Microbiol 122:719–732. https://doi.org/10.1111/jam.13370

    Article  PubMed  CAS  Google Scholar 

  24. Ma X, Wang G, Zhai Z, Zhou P, Hao Y (2018) Global transcriptomic analysis and function identification of malolactic enzyme pathway of Lactobacillus paracasei L9 in response to bile stress. Front Microbiol 9:1978–1978. https://doi.org/10.3389/fmicb.2018.01978

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu C, He G, Zhang J (2014) Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation. J Ind Microbiol Biotechnol 41(10):1533–1540. https://doi.org/10.1007/s10295-014-1487-3

    Article  PubMed  CAS  Google Scholar 

  26. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625e651. https://doi.org/10.1016/j.femsre.2004.09.003

    Article  CAS  Google Scholar 

  27. Lo Curto A, Pitino I, Mandalari G, Dainty JR, Faulks RM, Wickham MSJ (2011) Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 28(7):1359–1366. https://doi.org/10.1016/j.fm.2011.06.007

    Article  PubMed  Google Scholar 

  28. Nejati F, Oelschlaeger T (2015) In vitro characterization of Lactococcus lactis strains isolated from Iranian traditional dairy products as a potential probiotic. App Food Biotechnol 3(1):43–51. https://doi.org/10.22037/afb.v3i1.10350

    Article  Google Scholar 

  29. Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140(2–3):154–163. https://doi.org/10.1016/j.ijfoodmicro.2010.04.004

    Article  PubMed  CAS  Google Scholar 

  30. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  PubMed  CAS  Google Scholar 

  31. Ramiah K, Van Reenen C, Dicks L (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116(3):405–409. https://doi.org/10.1016/j.ijfoodmicro.2007.02.011

    Article  PubMed  CAS  Google Scholar 

  32. Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W (2013) Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci 96:4252–4257. https://doi.org/10.3168/jds.2013-6547

    Article  PubMed  CAS  Google Scholar 

  33. Angmo K, Kumari A, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci Technol 66:428–435. https://doi.org/10.1016/j.lwt.2015.10.057

    Article  CAS  Google Scholar 

  34. Nishiyama K, Ueno S, Sugiyama M, Yamamoto Y, Mukai T (2016) Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Anim Sci J 87(6):809–815. https://doi.org/10.1111/asj.12491

    Article  PubMed  CAS  Google Scholar 

  35. Valeriano VD, Parungao-Balolong MM, Kang DK (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J Appl Microbiol 117(2):485–497. https://doi.org/10.1111/jam.12539

    Article  PubMed  CAS  Google Scholar 

  36. Nishiyama K, Sugiyama M, Mukai T (2016) Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4(3):34. https://doi.org/10.3390/microorganisms4030034

    Article  PubMed Central  CAS  Google Scholar 

  37. Baumgartner A, Kueffer M, Simmen A, Grand M (1998) Relatedness of Lactobacillus rhamnosus strains isolated from clinical specimens and such from food-stuffs, humans and technology. LWT-Food Sci Technol 31(5):489–494. https://doi.org/10.1006/fstl.1998.0395

    Article  CAS  Google Scholar 

  38. Marroki A, Bousmaha-Marroki L (2014) Lactobacilli isolated from Algerian goat’s milk as adjunct culture in dairy products. Braz Arch Biol Technol 57:410–420. https://doi.org/10.1590/S1516-89132014005000003

    Article  CAS  Google Scholar 

  39. EFSA-FEEDAP (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740–2749. https://doi.org/10.2903/j.efsa.2012.2740

    Article  CAS  Google Scholar 

  40. Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, Danguleva A, Ivanova G, Karapetkov N, Rumyan N, Karaivanova E (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29(1):84–91. https://doi.org/10.1080/13102818.2014.987450

    Article  PubMed  CAS  Google Scholar 

  41. Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microbiol 100:1324–1332. https://doi.org/10.1111/j.1365-2672.2006.02857.x

    Article  PubMed  Google Scholar 

  42. Rowland I, Capurso L, Collins K, Cummings J, Delzenne N, Goulet O, Guarner F, Marteau P, Meier R (2010) Current level of consensus on probiotic science -report of an expert meeting- London, 23 November 2009. Gut Microbes 1:436–439. https://doi.org/10.4161/gmic.1.6.13610

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ayeni FA, Sánchez B, Adeniyi BA, Clara G, Margolles A, Ruas-Madiedo P (2011) Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. Int J Food Microbiol 147(2):97–104. https://doi.org/10.1016/j.ijfoodmicro.2011.03.014

    Article  PubMed  Google Scholar 

  44. Yang M, Jiang R, Liu M, Chen S, He L, Ao X, Zou L, Liu S, Zhou K (2017) Study of the probiotic properties of lactic acid bacteria isolated from Chinese traditional fermented pickles. J Food Process Preserv 41:e12954. https://doi.org/10.1111/jfpp.12954

    Article  CAS  Google Scholar 

  45. Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130. https://doi.org/10.1016/j.tips.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  46. Aguilar-Toalá JE, Astiazarán-García H, Estrada-Montoya MC, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A (2019) Modulatory effect of the intracellular content of Lactobacillus casei CRL 431 against the aflatoxin B1-induced oxidative stress in rats. Probiotics Antimicrob Proteins 11:470–477. https://doi.org/10.1007/s12602-018-9433-8

    Article  PubMed  CAS  Google Scholar 

  47. Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62(6):1689–1696. https://doi.org/10.1007/s00284-011-9915-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Council for Science and Technology from Mexico under Grant 260107.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GDO, HHS and HERL; Methodology: HHS, RMRA, PICS and AHM; Data curation: HERL and APL; Formal analysis: HERL and APL; Investigation: HERL, PICS and APL; Resources: GDO, HHS, RMRA and AHM; Writing—original draft preparation: HERL; and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gloria Dávila-Ortiz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not include any studies involving human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Luna, H.E., Peredo-Lovillo, A., Hernández-Mendoza, A. et al. Probiotic Potential of Lactobacillus paracasei CT12 Isolated from Water Kefir Grains (Tibicos). Curr Microbiol 77, 2584–2592 (2020). https://doi.org/10.1007/s00284-020-02016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02016-0

Navigation