Skip to main content
Log in

Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of the study is the research and identification of a Streptomyces strain as a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin. Among 54 actinomycete isolates isolated from El-Ogbane forest soils in Algeria, only one isolate, designated V002, was selected for its ability to produce prodigiosins. The selected strain was analysed for its ability to produce three different secondary metabolites as well as their biological activities. V002 belongs to the Streptomyces genus and has significant antimicrobial and antioxidant activities. The taxonomic position of V002 by 16S rRNA sequence analysis showed a similarity of 99.93% with Streptomyces lasiicapitis DSM 103124T and 98.96% with Streptomyces spectabilis DSM 40512T. Fractionation of crude secondary metabolites produced by the strain using HPLC–MS revealed the presence of spectinabilin, undecylprodigiosin and metacycloprodigiosin, which demonstrated significant activity. Strain V002 is considered a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin with significant antimicrobial and antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol 74:417–433

    Article  CAS  Google Scholar 

  2. Friedman ND, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22:416–422. https://doi.org/10.1016/j.cmi.2015.12.002

    Article  PubMed  CAS  Google Scholar 

  3. McLachlan A, Kekre N, McNulty J, Pandey S (2005) Pancratistatin: a natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis 10:619–630. https://doi.org/10.1007/s10495-005-1896-x

    Article  PubMed  CAS  Google Scholar 

  4. Mahajan GB, Balachandran L (2012) Antibacterial agents from actinomycetes—a review. Front Biosci 4:240–253. https://doi.org/10.2741/373

    Article  Google Scholar 

  5. Hassan SS, Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SA, Tasneem U (2017) Emerging biopharmaceuticals from marine actinobacteria. Environ Toxicol Pharmacol 49:34–47. https://doi.org/10.1016/j.etap.2016.11.015

    Article  PubMed  CAS  Google Scholar 

  6. Yang ZW, Salam N, Mohany M, Chinnathambi A, Alharbi SA, Xiao M, Hozzein WN, Li WJ (2018) Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int J Syst Evol Microbiol 68:217–222. https://doi.org/10.1099/ijsem.0.002485

    Article  PubMed  CAS  Google Scholar 

  7. Hauptmann AL, Stibal M, Bælum J, Sicheritz-Pontén T, Brunak S, Bowman JS, Hansen LH, Jacobsen CS, Blom N (2014) Bacterial diversity in snow on North Pole ice floes. Extremophiles 18:945–951. https://doi.org/10.1007/s00792-014-0660-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Medrano-Santillana M, Souza-Brito EM, Duran R, Gutierrez-Corona F, Reyna-López GE (2014) Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico). Extremophiles 21(3):499–511. https://doi.org/10.1007/s00792-017-0920-8

    Article  CAS  Google Scholar 

  9. Yang N, Song F (2018) Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from south china sea sediments. Curr Microbiol 75:142–149. https://doi.org/10.1007/s00284-017-1358-z

    Article  PubMed  CAS  Google Scholar 

  10. Pérez M, Schleissner C, Fernández R, Rodríguez P, Reyes F, Zuñiga P, de la Calle F, Cuevas C (2016) PM100117 and PM100118, new antitumor macrolides produced by a marine Streptomyces caniferus GUA-06-05-006A. J Antibiot 69:388–394. https://doi.org/10.1038/ja.2015.121

    Article  PubMed  CAS  Google Scholar 

  11. Wan Z, Fang W, Shi L, Wang K, Zhang Y, Zhang Z, Wu Z, Yang Z, Gu Y (2015) Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821. J Antibiot 68:185–190. https://doi.org/10.1038/ja.2014.123

    Article  PubMed  CAS  Google Scholar 

  12. Shaaban KA, Singh S, Elshahawi SI, Wang X, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS (2014) Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J Antibiot 67:223–230

    Article  CAS  Google Scholar 

  13. Kakinuma K, Hanson CA, Rinehart Jr KL (1976) Spectinabilin, a new nitro-containing metabolite isolated from Streptomyces spectabilis. Tetrahedron 32:217–222. https://doi.org/10.1016/0040-4020(76)87004-4

    Article  CAS  Google Scholar 

  14. Sevcikova B, Kormanec J (2004) Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol 181:384–389. https://doi.org/10.1007/s00203-004-0669-1

    Article  PubMed  CAS  Google Scholar 

  15. Wasserman HH, Rodgers GC, Keith DD (1969) Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J Am Chem Soc 91:1263–1264. https://doi.org/10.1021/ja01033a065

    Article  PubMed  CAS  Google Scholar 

  16. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    Article  CAS  Google Scholar 

  17. Valanarasu M, Duraipandiyan V, Agastian P, Ignacimuthu S (2009) In vitro antimicrobial activity of Streptomyces from Western Ghats rock soil (India). J Mycol Med 19:22–28. https://doi.org/10.1016/j.mycmed.2008.12.002

    Article  Google Scholar 

  18. Tanasupawat S, Jongrungruangchok S, Kudo T (2010) Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 60:648–652. https://doi.org/10.1099/ijs.0.014068-0

    Article  PubMed  CAS  Google Scholar 

  19. Songsumanus A, Tanasupawat S, Thawai C, Suwanborirux K, Kudo T (2011) Micromonospora humi sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 61:1176–1181. https://doi.org/10.1099/ijs.0.024281-0

    Article  PubMed  CAS  Google Scholar 

  20. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. https://doi.org/10.1099/00207713-16-3-313

    Article  Google Scholar 

  21. Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P (2014) The family Streptomycetaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes, 4th edn. Springer, Berlin, pp 889–1010

    Google Scholar 

  22. Suter MA (1978) Isolierung von Melanin-negativen Mutanten aus Streptomyces glaucescens, thesis no. 6276. Eidgenossische Technische Hochschule, Switzerland

  23. Jia F, Liu C, Wang X, Zhao J, Liu Q, Zhang J, Gao R, Xiang W (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408. https://doi.org/10.1007/s10482-012-9820-1

    Article  PubMed  CAS  Google Scholar 

  24. MacFaddin JF (2000) Biochemical tests for the identification of medical bacteria, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  25. Humble MW, King A, Phillips I (1977) API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277. https://doi.org/10.1136/jcp.30.3.275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kilian M (1978) Rapid identification of Actinomycetaceae and related bacteria. J Clin Microbiol 8:127–133

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Wink J (2002) Polyphasic taxonomy and antibiotic formation in some closely related genera of the family Pseudonocardiaceae. Recent Res Dev Antibiot 2:97–140

    Google Scholar 

  28. Tan LT, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, Pusparajah P, Lee LH, Goh BH (2017) Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front Pharmacol 8:276

    Article  CAS  Google Scholar 

  29. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  PubMed  CAS  Google Scholar 

  30. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036. https://doi.org/10.1099/00207713-50-6-2031

    Article  PubMed  CAS  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  PubMed  CAS  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  34. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  PubMed  CAS  Google Scholar 

  35. Charousová I, Medo J, Hleba L, Javoreková S (2018) Streptomyces globosus DK15 and Streptomyces ederensis ST13 as new producers of factumycin and tetrangomycin antibiotics. Braz J Microbiol 49:816–822

    Article  CAS  Google Scholar 

  36. Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systemic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953. https://doi.org/10.1016/j.foodchem.2006.06.033

    Article  CAS  Google Scholar 

  37. Orphanides A, Goulas V, Gekas V (2013) Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J Food Sci 31:509–513

    Article  CAS  Google Scholar 

  38. Ye L, Zhao S, Li Y, Jiang S, Zhao Y, Li J, Yan K, Wang X, Xiang W, Liu C (2017) Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.). Int J Syst Evol Microbiol 67:1529–1534. https://doi.org/10.1099/ijsem.0.001756

    Article  PubMed  CAS  Google Scholar 

  39. Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y (2002) Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother 46:1112–1113

    Article  CAS  Google Scholar 

  40. Choi YS, Johannes TW, Simurdiak M, Shao Z, Lu H, Zhao H (2010) Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis. Mol Biosyst 6:336–338. https://doi.org/10.1039/b923177c

    Article  PubMed  CAS  Google Scholar 

  41. Liu MJ, Hwang BS, Jin CZ, Li WJ, Park DJ, Seo ST, Kim CJ (2019) Screening, isolation and evaluation of a nematicidal compound from actinomycetes against the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag Sci 75:1585–1593. https://doi.org/10.1002/ps.5272

    Article  PubMed  CAS  Google Scholar 

  42. Wang W, Song T, Chai W, Chen L, Chen L, Lian XY, Zhang Z (2017) Rare polyene-polyol macrolides from mangrove-derived Streptomyces sp. ZQ4BG. Sci Rep 7:1703

    Article  CAS  Google Scholar 

  43. Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96:1217–1231. https://doi.org/10.1007/s00253-012-4237-3

    Article  PubMed  CAS  Google Scholar 

  44. Zainal Abidin ZA, Ahmad A, Latip J, Usup G (2016) Marine Streptomyces sp. UKMCC_PT15 producing undecylprodigiosin with algicidal activity. J Teknologi 78:55–60

    Google Scholar 

  45. Ikeda H, Shikata Y, Watanapokasin R, Tashiro E, Imoto M (2017) Metacycloprodigiosin induced cell death selectively in β-catenin-mutated tumor cells. J Antibiot 70:109–112. https://doi.org/10.1038/ja.2016.75

    Article  PubMed  CAS  Google Scholar 

  46. Liu R, Cui CB, Duan L, Gu QQ, Zhu WM (2005) Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch Pharm Res 28:1341–1344. https://doi.org/10.1007/BF02977899

    Article  PubMed  CAS  Google Scholar 

  47. Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J Agric Food Chem 64:1028–1045. https://doi.org/10.1021/acs.jafc.5b04743

    Article  PubMed  CAS  Google Scholar 

  48. Raghava Rao KV, Raghava Rao TJ (2013) Molecular characterization and its antioxidant activity of a newly isolated Streptomyces coelicoflavus BC 01 from mangrove soil. J Young Pharm 5(4):121–126

    Article  CAS  Google Scholar 

  49. Sowndhararajan K, Kang SC (2013) Evaluation of in vitro free radical scavenging potential of Streptomyces sp. AM-S1 culture filtrate. Saudi J Biol Sci 20:227–233. https://doi.org/10.1016/j.sjbs.2012.12.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Abdelfattah MS, Elmallah MIY, Ebrahim HY, Almeer RS, Eltanany RMA, Abdel Moneim AE (2019) Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS ONE 14:e0216737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the researchers and technician from microbial strain collection department, Helmholtz Centre for Infection Research for their support during this work.

Author information

Authors and Affiliations

Authors

Contributions

MAG carried out experimental work. MAG and BB co-wrote the manuscript. AOHK and JW conceived and designed the study. All authors contributed to interpretation of results, read and approved the final draft.

Corresponding author

Correspondence to Mohamed Amine Gacem.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gacem, M.A., Ould-El-Hadj-Khelil, A., Boudjemaa, B. et al. Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin. Curr Microbiol 77, 2575–2583 (2020). https://doi.org/10.1007/s00284-020-02007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02007-1

Navigation