Skip to main content

Advertisement

Log in

Energy efficiency resource allocation based on spectrum-power tradeoff in distributed satellite cluster network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Distributed satellite cluster network is a novel structure in spatial information network. This paper investigates the spectrum-power tradeoff algorithm for distributed satellite cluster (DSC), which enables the master satellite (MS) to offload data traffic to the slave satellite (SS). The SS provides power resource to the master satellite users (MSUs) with bandwidth as compensation. The purpose of the proposed algorithm is to maximize the energy efficiency (EE) of the SS while ensuring the QoS of the DSC. Considering data rate and bandwidth constraints of the MS, the SS jointly allocates bandwidth and power resources based on the served MSU set, meanwhile, data rate and power constraints of the SS should be also satisfied. We first prove that compensating bandwidth of a MSU can only be used by one slave satellite user. Then objective function is simplified to the equivalent subtractive form that can be solved by convex optimization method. Besides, we discuss the MSU selection conditions and employ them to the proposed spectrum-power tradeoff algorithm. The numerical results validate the performance improvement of the proposed algorithm and demonstrate the impact of power, bandwidth and data rate on the EE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnhart, D. J., Vladimirova, T., & Sweeting, M. N. (2007). Very-small-satellite design for distributed space missions. Journal of Spacecraft & Rockets,44(44), 1294–1306.

    Article  Google Scholar 

  2. Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, S. C. (2016). Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Communications Surveys & Tutorials,18(4), 2442–2473.

    Article  Google Scholar 

  3. Dong, F., Li, X., Yao, Q., He, Y., & Wang, J. (2015). Topology structure design and performance analysis on distributed satellite cluster networks. In 2015 4th international conference on computer science and network technology (ICCSNT) (vol. 1, pp. 881–884), IEEE.

  4. Dong, F., Wang, J., Yang, J., & Cai, C. (2015). Distributed satellite cluster network: A survey. Journal of Donghua University (English Edition),32(2), 33.

    Google Scholar 

  5. Brown, O., Eremenko, P., & Collopy, P. (2009). Value-centric design methodologies for fractionated spacecraft: Progress summary from phase I of the DARPA system F6 program. In AIAA space 2009 conference and exposition (p. 6540).

  6. Gayrard, J.-D., Zein-Alabedeen, T., Cotellessa, A., Gallinaro, G., Perrot, G., & Bertenyi, E. (2004). SkyLAN: A cluster of geostationnary satellites for broadband communications. In 22nd AIAA international communications satellite systems conference and exhibit 2004 (ICSSC) (p. 3233).

  7. Collopy, P., & Sundberg, E. (2010). Creating value with space based group architecture. In AIAA space 2010 conference and exposition (p. 8799).

  8. Calvel, B. (2000). Recent development in silicon carbide lightweight optics at Matra Marconi space. Next Generation Space Telescope Science and Technology,207, 435.

    Google Scholar 

  9. Zhong, X., Hao, Y., He, Y., & Huang, Y. (2017). Joint downlink power and time-slot allocation for distributed satellite cluster network based on Pareto optimization. IEEE Access,99, 1.

    Google Scholar 

  10. Han, T., & Ansari, N. (2014). Enabling mobile traffic offloading via energy spectrum trading. IEEE Transactions on Wireless Communications,13(6), 3317–3328.

    Article  Google Scholar 

  11. She, C., Yang, C., & Liu, L. (2015). Energy-efficient resource allocation for MIMO-OFDM systems serving random sources with statistical QoS requirement. IEEE Transactions on Communications,63(11), 4125–4141.

    Article  Google Scholar 

  12. Xu, Y., Hu, R. Q., Qian, Y., & Znati, T. (2016). Video quality-based spectral and energy efficient mobile association in heterogeneous wireless networks. IEEE Transactions on Communications,64(2), 805–817.

    Article  Google Scholar 

  13. Han, T., & Ansari, N. (2016). A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources. IEEE/ACM Transactions on Networking,24(2), 1038–1051.

    Article  Google Scholar 

  14. Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication,28, 130–137.

    Article  Google Scholar 

  15. Liu, X., Jia, M., Zhang, X., & Lu, W. (2019). A novel multi-channel Internet of Things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal,6(4), 5962–5970.

    Article  Google Scholar 

  16. Chen, Y., Zhang, S., Xu, S., & Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine,49(6), 30–37.

    Article  Google Scholar 

  17. Liu, X., & Zhang, X. (2019). Rate and Energy Efficiency Improvements for 5G-based IoT with Simultaneous Transfer. IEEE Internet of Things Journal,6(4), 5971–5980.

    Article  Google Scholar 

  18. Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine,24(3), 58–86.

    Article  Google Scholar 

  19. Li, S., Ni, Q., Sun, Y., Min, G., & Al-Rubaye, S. (2018). Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G Era. IEEE Transactions on Industrial Informatics,14(6), 2618–2628.

    Article  Google Scholar 

  20. Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks. IEEE Network,32(2), 152–160.

    Article  Google Scholar 

  21. Cheng, K, Teng, Y., Sun, W., Liu, A., & Wang, X. (2018). Energy-efficient joint offloading and wireless resource allocation strategy in multi-MEC server systems. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).

  22. Zhou, Z., Dong, M., Ota, K., Shi, R., Liu, Z., & Sato, T. (2015). Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications. IET Communications,9(3), 375–385.

    Article  Google Scholar 

  23. You, C., Zeng, Y., Zhang, R., & Huang, K. (2018). Asynchronous mobile-edge computation offloading: energy-efficient resource management. IEEE Transactions on Wireless Communications,17(11), 7590–7605.

    Article  Google Scholar 

  24. Deng, L., Rui, Y., Cheng, P., Zhang, J., Zhang, Q., & Li, M. (2012). A unified energy efficiency and spectral efficiency tradeoff metric in wireless networks. IEEE Communications Letters,17(1), 55–58.

    Article  Google Scholar 

  25. Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications,58(2), 545–554.

    Article  Google Scholar 

  26. Wu, Q., Li, G. Y., Chen, W., & Ng, D. W. K. (2016). Energy-efficient small cell with spectrum-power trading. IEEE Journal on Selected Areas in Communications,34(12), 3394–3408.

    Article  Google Scholar 

  27. Aravanis, A. I., Bhavani, S. M. R., Arapoglou, P. D., Danoy, G., Cottis, P. G., & Ottersten, B. (2015). Power allocation in multibeam satellite systems: A two-stage multi-objective optimization. IEEE Transactions on Wireless Communications,14(6), 3171–3182.

    Article  Google Scholar 

  28. Michel, T., Thapa, B., & Taylor, S. (2013). 802.11 s based multi-radio multi-channel mesh networking for fractionated spacecraft. In 2013 IEEE aerospace conference (pp. 1–8), IEEE.

  29. Dong, F., He, Y., Nan, H., Zhang, Z., & Wang, J. (2015). System capacity analysis on constellation of interconnected HAP networks. In 2015 IEEE fifth international conference on big data and cloud computing (pp. 154–159), IEEE.

  30. Campbell, M. E. (2004). Collision monitoring within satellite clusters. IEEE Transactions on Control Systems Technology,13(1), 42–55.

    Article  Google Scholar 

  31. Zhang, J. (2006). Research on autonomous formation reconfiguration techniques for distributed satellite systems. Changsha: Ph.D. Dissertation, University of Defense Technology.

  32. Guo, Y., Xu, J., Duan, L., & Zhang, R. (2014). Joint energy and spectrum cooperation for cellular communication systems. IEEE Transactions on Communications,62(10), 3678–3691.

    Article  Google Scholar 

  33. Letzepis, N., & Grant, A. J. (2008). Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Transactions on Information Theory,54(11), 5210–5222.

    Article  MathSciNet  Google Scholar 

  34. Arti, M. K. (2016). Channel estimation and detection in satellite communication systems. IEEE Transactions on Vehicular Technology,65(12), 10173–10179.

    Article  Google Scholar 

  35. Abdi, A., Lau, W. C., Alouini, M. S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: first- and second-order statistics. IEEE Transactions on Wireless Communications,2(3), 519–528.

    Article  Google Scholar 

  36. Ismail, M., Zhuang, W., Serpedin, E., & Qaraqe, K. (2015). A survey on green mobile networking: From the perspectives of network operators and mobile users. IEEE Communications Surveys & Tutorials,17(3), 1535–1556.

    Article  Google Scholar 

  37. Wang, W., Zhao, S., Zheng, Y., & Li, Y. (2019). Resource allocation method of cognitive satellite terrestrial networks under non-ideal spectrum sensing. IEEE Access,7, 7957–7964.

    Article  Google Scholar 

  38. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science,13(7), 492–498.

    Article  MathSciNet  Google Scholar 

  39. Boyd, S., & Vandenberghe, L. (2004). Convex optimization (p. 3). Cambrige: Cambrige University Press.

    Book  Google Scholar 

  40. Corless, R. M., Jeffrey, D. J., & Knuth, D. E. (1997). A sequence of series for the Lambert W function. ISSAC,97, 197–204.

    Article  MathSciNet  Google Scholar 

  41. He, C., Sheng, B., Zhu, P., You, X., & Li, G. Y. (2013). Energy- and Spectral-Efficiency Tradeoff for Distributed Antenna Systems with Proportional Fairness. IEEE Journal on Selected Areas in Communications,31(5), 894–902.

    Article  Google Scholar 

  42. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms. Hoboken: Wiley.

    MATH  Google Scholar 

  43. Ngo, D. T., Khakurel, S., & Le-Ngoc, T. (2014). Joint subchannel assignment and power allocation for OFDMA femtocell networks. IEEE Transactions on Wireless Communications,13(1), 342–355.

    Article  Google Scholar 

  44. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications,11(10), 3618–3631.

    Article  Google Scholar 

  45. Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2312–2327.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 91638101, 61701522, and Natural Science Foundation of Shanxi Province 2018JM6069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

The most effective tradeoff strategy is that only one SSU with the biggest channel power gain shares bandwidth of MSUk, and then we prove this with proof by contradiction as follows. It is supposed that \( \tilde{A} = \{ \tilde{p}_{n} ,\tilde{p}_{k,n} ,\tilde{v}_{k} ,\tilde{b}_{k,n} ,\tilde{t}_{k} ,\tilde{z}_{k} \} \) is optical solution for (9), and the bandwidth of the given MSUe can be shared by two SSUs, SSUm and SSUm’, m ≠ m’. ge,m is the biggest channel power gain between SS and SSUs on Te, and since the channel fading is continuous and random, the channel power gain of the two SSUs cannot be equal. Let \( \hat{A} = \{ \hat{p}_{n} ,\hat{p}_{k,n} ,\hat{v}_{k} ,\hat{b}_{k,n} ,\hat{t}_{k} ,\hat{z}_{k} \} \) be an another different solution for (9), where \( \tilde{p}_{n} = \hat{p}_{n} \), \( \tilde{v}_{k} = \hat{v}_{k} \), \( \tilde{t}_{k} = \hat{t}_{k} \), \( \tilde{z}_{k} = \hat{z}_{k} \),

$$ \hat{p}_{k,n} = \left\{ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\tilde{p}_{{{\text{e}},m}} + \tilde{p}_{{e,m^{\prime}}} ,} \hfill \\ {0,} \hfill \\ {\tilde{p}_{k,n} ,} \hfill \\ \end{array} } \hfill & {\begin{array}{*{20}l} {k = e,n = m} \hfill \\ {k = e,n \ne m} \hfill \\ {k \ne e} \hfill \\ \end{array} } \hfill \\ \end{array} } \right.\quad {\text{and}}\quad \hat{b}_{k,n} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}l} {\tilde{b}_{{{\text{e}},m}} + \tilde{b}_{{e,m^{\prime}}} ,} \hfill \\ {0,} \hfill \\ {\tilde{b}_{k,n} ,} \hfill \\ \end{array} } & {\begin{array}{*{20}l} {k = e,n = m} \hfill \\ {k = e,n \ne m} \hfill \\ {k \ne e} \hfill \\ \end{array} } \\ \end{array} } \right.. $$

The solution \( \hat{A} \) is feasible due to meeting all constraints in (9). And then, the data rate of SS on MSUe’s bandwidth is denoted as follows

$$ \begin{aligned} & \hat{b}_{e,m} \log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{e,m} \hat{p}_{e,m} }}{{(4\pi d)^{2} N_{0} \hat{b}_{e,m} }}} \right) \\ & = (\tilde{b}_{{{\text{e}},m}} + \tilde{b}_{{e,m^{\prime}}} )\log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{e,m} (\tilde{p}_{e,m} + \tilde{p}_{{e,m^{\prime}}} )}}{{(4\pi d)^{2} N_{0} (\tilde{b}_{{{\text{e}},m}} + \tilde{b}_{{e,m^{\prime}}} )}}} \right) \\ & \mathop \ge \limits^{(\alpha )} \tilde{b}_{{{\text{e}},m}} \log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{e,m} \tilde{p}_{e,m} }}{{(4\pi d)^{2} N_{0} \tilde{b}_{{{\text{e}},m}} }}} \right) + \tilde{b}_{{e,m^{\prime}}} \log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{e,m} \tilde{p}_{{e,m^{\prime}}} }}{{(4\pi d)^{2} N_{0} \tilde{b}_{{e,m^{\prime}}} }}} \right) \\ & \mathop > \limits^{(\beta )} \tilde{b}_{{{\text{e}},m}} \log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{e,m} \tilde{p}_{e,m} }}{{(4\pi d)^{2} N_{0} \tilde{b}_{{{\text{e}},m}} }}} \right) + \tilde{b}_{{e,m^{\prime}}} \log_{2} \left( {1 + \frac{{\lambda G_{s} G_{u} g_{{e,m^{\prime}}} \tilde{p}_{{e,m^{\prime}}} }}{{(4\pi d)^{2} N_{0} \tilde{b}_{{e,m^{\prime}}} }}} \right) \\ \end{aligned} . $$
(28)

The inequality (α) holds because the function \( x\log_{2} (1 + {y \mathord{\left/ {\vphantom {y x}} \right. \kern-0pt} x}) \) is concave, and strict inequality (β) holds because of ge,m > ge,m’. It is concluded that the solution \( \hat{A} \) obtains higher total data rate when the power consumption is the same. Hence, \( \hat{A} \) achieves higher EE compared with \( \tilde{A} \), which is in contradiction with the original hypothesis that \( \tilde{A} \) is the optimal solution.

Then we prove that C2 and C3 satisfy the equality at the resource allocation solution. When zk = 0, the constraint C2 in (9) transform to \( t_{k} + b_{k,n} \le 0 \). Considering tk and bk,n ≥ 0, so tk = bk,n = 0, and thus, C2 and C3 meet the equality. When zk = 1, if strict inequality \( t_{k} + b_{k,n} < z_{k} T_{k} \) and \( t_{k} \log_{2} (1 + \frac{{\lambda G_{s} G_{u} v_{k} h_{k} }}{{(4\pi d)^{2} t_{k} N_{0} }}) > z_{k} R_{k}^{\text{MSU}} \) hold under the optimal solution, another different solution could be acquired via raising bk,n and reducing vk, which makes C2 and C3 tend to inequality while getting higher EE. This result contradicts the hypothesis that the optimal solution is obtained when strict inequalities of C2 and C3 hold.

Appendix B: Proof of Theorem 2

At first, introduce the following lemma [45]:

Lemma

If x1, x2, x3, and x4are arbitrary positive numbers, then:

$$ \hbox{min} \left\{ {\frac{{x_{1} }}{{x_{2} }},\frac{{x_{3} }}{{x_{4} }}} \right\} \le \frac{{x_{1} + x_{3} }}{{x_{2} + x_{4} }} \le \hbox{max} \left\{ {\frac{{x_{1} }}{{x_{2} }},\frac{{x_{3} }}{{x_{4} }}} \right\}. $$
(29)

The equality holds If and only if \( {{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {x_{2} }}} \right. \kern-0pt} {x_{2} }} = {{x_{3} } \mathord{\left/ {\vphantom {{x_{3} } {x_{4} }}} \right. \kern-0pt} {x_{4} }} \).

Then (1) of Theorem 2 is proved as follows. \( \bar{A} = \{ \bar{p}_{n} ,\bar{p}_{{k,n^{\prime}}} ,\bar{v}_{k} ,\bar{b}_{{k,n^{\prime}}} ,\bar{t}_{k} \} \) is defined as the optimum solution of problem (26), and \( \tilde{A} = \{ \tilde{p}_{n} ,\tilde{p}_{{k,n^{\prime}}} ,\tilde{v}_{k} ,\tilde{b}_{{k,n^{\prime}}} ,\tilde{t}_{k} \} \) and \( \hat{A} = \{ \hat{p}_{n} ,\hat{p}_{{k,n^{\prime}}} ,\hat{v}_{k} ,\hat{b}_{{k,n^{\prime}}} ,\hat{t}_{k} \} \) are defined as the optimum solutions of problem (10) with \( k \in \varPhi \) and \( k \in \varPhi \cup \{ j\} \). Besides, the corresponding maximum EEs are defined as \( EE_{k}^{*} \), \( EE_{\varPhi }^{*} \) and \( EE_{{\varPhi \cup \{ j\} }}^{*} \), respectively. Therefore, we can obtain

$$ \begin{aligned} EE_{{\varPhi \cup \{ j\} }}^{*} & = \frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\hat{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\hat{p}_{{k,n^{\prime } }} ,\hat{b}_{{k,n^{\prime } }} )} + r_{j,e} (\hat{p}_{j,e} ,\hat{b}_{j,e} )}}{{\sum\nolimits_{n = 1}^{N} {\hat{p}_{n} } + \sum\nolimits_{k \ne j} {\hat{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\hat{v}_{k} } + P_{s} + \hat{p}_{j,e} + \hat{v}_{j} }} \\ & \mathop \ge \limits^{\alpha } \frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\tilde{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\tilde{p}_{{k,n^{\prime } }} ,\tilde{b}_{{k,n^{\prime } }} )} + r_{j,e} (\bar{p}_{j,e} ,\bar{b}_{j,e} )}}{{\sum\nolimits_{n = 1}^{N} {\tilde{p}_{n} } + \sum\nolimits_{k \ne j} {\tilde{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\tilde{v}_{k} } + P_{s} + \bar{p}_{j,e} + \bar{v}_{j} }} \\ & \mathop \ge \limits^{\beta } \hbox{min} \left\{ {\frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\tilde{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\tilde{p}_{{k,n^{\prime } }} ,\tilde{b}_{{k,n^{\prime } }} )} }}{{\sum\nolimits_{n = 1}^{N} {\tilde{p}_{n} } + \sum\nolimits_{k \ne j} {\tilde{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\tilde{v}_{k} } + P_{s} }},\frac{{r_{j,e} (\bar{p}_{j,e} ,\bar{b}_{j,e} )}}{{\bar{p}_{j,e} + \bar{v}_{j} }}} \right\} \\ & = \hbox{min} \left\{ {EE_{\varPhi }^{*} ,EE_{j}^{*} } \right\}, \\ \end{aligned} $$
(30)

where \( e = \arg \hbox{max} g_{j.n} \). The inequality (α) holds because \( \hat{A} \) is the optimum solution of problem (10) with \( k \in \varPhi \cup \{ j\} \), and the inequality (β) holds because of the Lemma. Therefore, it is concluded that \( EE_{j}^{*} > EE_{\varPhi }^{*} \) is the sufficient condition for \( EE_{{\varPhi \cup \{ j\} }}^{*} > EE_{\varPhi }^{*} \). Then we prove that \( EE_{j}^{*} > EE_{\varPhi }^{*} \) is the necessary condition for \( EE_{{\varPhi \cup \{ j\} }}^{*} > EE_{\varPhi }^{*} \), we can obtain:

$$ \begin{aligned} EE_{{\varPhi \cup \{ j\} }}^{*} & = \frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\hat{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\hat{p}_{{k,n^{\prime } }} ,\hat{b}_{{k,n^{\prime } }} )} + r_{j,e} (\hat{p}_{j,e} ,\hat{b}_{j,e} )}}{{\sum\nolimits_{n = 1}^{N} {\hat{p}_{n} } + \sum\nolimits_{k \ne j} {\hat{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\hat{v}_{k} } + P_{s} + \hat{p}_{j,e} + \hat{v}_{j} }} \\ & \mathop \le \limits^{\chi } \hbox{max} \left\{ {\frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\hat{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\hat{p}_{{k,n^{\prime } }} ,\hat{b}_{{k,n^{\prime } }} )} }}{{\sum\nolimits_{n = 1}^{N} {\hat{p}_{n} } + \sum\nolimits_{k \ne j} {\hat{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\hat{v}_{k} } + P_{s} }},\frac{{r_{j,e} (\bar{p}_{j,e} ,\bar{b}_{j,e} )}}{{\bar{p}_{j,e} + \bar{v}_{j} }}} \right\} \\ & \mathop \le \limits^{\delta } \hbox{max} \left\{ {\frac{{\sum\nolimits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\tilde{p}_{n} )} + \sum\nolimits_{k \ne j} {r_{{k,n^{\prime } }} (\tilde{p}_{{k,n^{\prime } }} ,\tilde{b}_{{k,n^{\prime } }} )} }}{{\sum\nolimits_{n = 1}^{N} {\tilde{p}_{n} } + \sum\nolimits_{k \ne j} {\tilde{p}_{{k,n^{\prime } }} } + \sum\nolimits_{k \ne j} {\tilde{v}_{k} } + P_{s} }},\frac{{r_{j,e} (\bar{p}_{j,e} ,\bar{b}_{j,e} )}}{{\bar{p}_{j,e} + \bar{v}_{j} }}} \right\} \\ & = \hbox{max} \left\{ {EE_{\varPhi }^{*} ,EE_{j}^{*} } \right\}, \\ \end{aligned} $$
(31)

The inequality (χ) holds because of the Lemma, and inequality (δ) holds because \( \tilde{A} \) and \( \bar{A} \) are the optimum solutions of problem (10) with \( k \in \varPhi \) and problem (26), respectively. Therefore, it is concluded that \( EE_{j}^{*} \le EE_{\varPhi }^{*} \)\( \Rightarrow \)\( EE_{\varPhi }^{*} \le EE_{{\varPhi \cup \{ j\} }}^{*} \), which is the contrapositive proposition of the \( EE_{\varPhi }^{*} > EE_{{\varPhi \cup \{ j\} }}^{*} \)\( \Rightarrow \)\( EE_{j}^{*} > EE_{\varPhi }^{*} \). Thus, we prove that \( EE_{j}^{*} > EE_{\varPhi }^{*} \) is the necessary and sufficient condition for \( EE_{{\varPhi \cup \{ j\} }}^{*} > EE_{\varPhi }^{*} \).

Next we prove (2) of Theorem 2. When constraint C4 is removed from problem (10), based on (1) of Theorem 2, the inequality (α) in (30) would not hold due to the different power constraint on different solutions. \( \tilde{A} \) and \( \bar{A} \) are limited by

$$ \sum\limits_{n = 1}^{N} {\tilde{p}_{n} } + \sum\limits_{k \ne j} {\tilde{p}_{{k,n^{\prime}}} } + \sum\limits_{k \ne j} {\tilde{v}_{k} } \le P_{\hbox{max} }^{\text{SS}} , $$
(32)
$$ \bar{p}_{j,e} ,\bar{v}_{j} \ge 0, $$
(33)

but \( \hat{A} \) is limited by

$$ \sum\limits_{n = 1}^{N} {\hat{p}_{n} } + \sum\limits_{k \ne j} {\hat{p}_{{k,n^{\prime}}} } + \sum\limits_{k \ne j} {\hat{v}_{k} } + \hat{p}_{j,e} + \hat{v}_{j} \le P_{\hbox{max} }^{\text{SS}} . $$
(34)

Therefore, from (32) to (34), it is concluded that the feasible domain of \( \tilde{A} \) and \( \bar{A} \) is greater than the feasible domain of \( \hat{A} \), which results in the inequality (α) in (30) not holding. But this result demonstrates that the inequality (δ) in (31) holds.

Finally we prove (3) of Theorem 2. When constraint C1 is removed from problem (10), based on (1) of Theorem 2, the inequality (δ) in (31) would not hold due to the different data rate constraint on different solutions. \( \hat{A} \) is limited by

$$ \sum\limits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\hat{p}_{n} )} + \sum\limits_{k \ne j} {r_{{k,n^{\prime}}} (\hat{p}_{{k,n^{\prime}}} ,\hat{b}_{{k,n^{\prime}}} )} + r_{j,e} (\hat{p}_{j,e} ,\hat{b}_{j,e} ) \ge R^{\text{SS}} , $$
(35)

but \( \tilde{A} \) is limited by

$$ \sum\limits_{n = 1}^{N} {r_{n}^{\text{SSU}} (\tilde{p}_{n} )} + \sum\limits_{k \ne j} {r_{{k,n^{\prime}}} (\tilde{p}_{{k,n^{\prime}}} ,\tilde{b}_{{k,n^{\prime}}} )} \ge R^{\text{SS}} . $$
(36)

Therefore, from (35) to (36), it is concluded that the feasible domain of \( \hat{A} \) is greater than the feasible domain of \( \tilde{A} \) and \( \bar{A} \), which results in the inequality (δ) in (31) not holding. But this result demonstrates that the inequality (α) in (30) holds. Thus the proof of Theorem 2 is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wei, J., Zhao, S. et al. Energy efficiency resource allocation based on spectrum-power tradeoff in distributed satellite cluster network. Wireless Netw 26, 4389–4402 (2020). https://doi.org/10.1007/s11276-020-02349-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02349-5

Keywords

Navigation