Skip to main content
Log in

CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3–5 days post inoculation (dpi) and matured at 21–28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7–21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7–14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7–21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, Favery B, García-Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61:698–712

    CAS  PubMed  Google Scholar 

  • Bartlem DG, Jones MGK, Hammes UZ (2014) Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Exp Bot 65:1789–1798

    CAS  PubMed  Google Scholar 

  • Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H, Maes S, Van Isterdael G, Russinova E, Kondorosi E, Witters E, De Jaeger G, Inzé D, De Veylder L (2009) CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol 150:1482–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bybd DW, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15(1):142–143

  • Cabrera J, Díaz-Manzano FE, Barcala M, Arganda-Carreras I, de Almeida Engler J, Engler G, Fenoll C, Escobar C (2015) Phenotyping nematode feeding sites: three dimensional reconstruction and volumetric measurements of giant cells induced by root-knot nematodes in Arabidopsis. New Phytol 206:868–880

    CAS  PubMed  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus Barbeoch L, Lecomte P, de Almeida Engler J, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. Plant Physiol 165:104–113

    CAS  Google Scholar 

  • Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59:1305–1313

    CAS  PubMed  Google Scholar 

  • de Almeida Engler J, Gheysen G (2013) Nematode-induced endoreduplication in plant host cells: why and how? Mol Plant-Microbe Interact 26:17–24

    PubMed  Google Scholar 

  • de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL Jr, Inze D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–808

    PubMed  PubMed Central  Google Scholar 

  • de Almeida Engler J, De Veylder L, De Groodt R, Rombouts S, Bouldouf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inzé D, Engler G (2009) Systematic analysis of cell cycle gene expression during Arabidopsis development. Plant J 59:645–660

    PubMed  Google Scholar 

  • de Almeida Engler J, Engler G, Gheysen G (2011) Unravelling the plant cell cycle in nematode induced feeding sites. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht, pp 349–368

    Google Scholar 

  • de Almeida Engler J, Kyndt T, Vieira P, Van Cappelle E, Bouldolf V, Sanchez V, Escobar C, De Veylder L, Engler G, Abad P, Gheysen G (2012) CCS52 and DEL1 genes are key components of the endocycle in nematode induced feeding sites. Plant J 72:185–198

    PubMed  Google Scholar 

  • De Veylder L, Joubès J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    PubMed  Google Scholar 

  • De Veylder L, Larkin JC, Schnittger A (2011) Molecular control and function of endoreduplication in development and physiology. Trends Plant Sci 16:624–634

    PubMed  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    CAS  PubMed  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    CAS  PubMed  Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in myrobalan plum. Theor Appl Genet 92:873–879

    CAS  PubMed  Google Scholar 

  • Fülöp K, Tarayre S, Kelemen Z, Horváth G, Kevei Z, Nikovics K, Bakó L, Brown S, Kondorosi A, Kondorosi E (2005) Arabidopsis anaphase-promoting complexes: multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle 4:1084–1092

    PubMed  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219

    CAS  PubMed  Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421

    PubMed  Google Scholar 

  • Hamamouch N, Li C, Seo PJ, Park CM, Davis EL (2011) Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12:355–364

    CAS  PubMed  Google Scholar 

  • Janice DAE, Kyndt T, Vieira P, Cappelle EV, Boudolf V, Sanchez V, Escobar C, Veylder LD, Engler G, Abad P, Gheysen G (2012) CCS52 and DEL1 genes are key components of the endocycle in nematode-induced feeding sites. Plant J 72:185–198

    Google Scholar 

  • Jones MGK, Goto DB (2011) Root-knot nematodes and giant cells. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht, pp 83–100

    Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    PubMed  PubMed Central  Google Scholar 

  • Khallouk S, Voisin R, Van Ghelder C, Engler G, Amiri S, Esmenjaud D (2011) Histological mechanisms of the resistance conferred by the Ma gene against Meloidogyne incognita in Prunus spp. Phytopathology 101:945–951

    CAS  PubMed  Google Scholar 

  • Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L, Van Criekinge W, De Meyer T, Gheysen G (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196:887–900

    CAS  PubMed  Google Scholar 

  • Kyndt T, Vieira P, Gheysen G, de Almeida Engler J (2013) Nematode feeding sites: unique organs in plant roots. Planta 238:807–818

    CAS  PubMed  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inzé D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao K, Li HF, Geng WJ, Liu T (2008) Primary research on cutting propagation of wild cherry plum. Chin Wild Plant Resourc 27:58–60

    Google Scholar 

  • Liu Q, Qiao F, Zhu X, Lu CL, Li TZ, Hu JF (2013) Morphology and development of root knot in Xinjiang wild myrobalan plum infected by Meloidogyne incognita. J China Agric Univ 18:101–107

    Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht

    Google Scholar 

  • Portillo M, Cabrera J, Lindsey K, Topping J, Andrés MF, Emiliozzi M, Oliveros JC, García-Casado G, Solano R, Koltai H, Resnick N, Fenoll C, Escobar C (2013) Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol 197:1276–1290

    CAS  PubMed  Google Scholar 

  • Qiao F, Li H, Zhu X, Ma K, Chen XF, Qiu ZN, Hu JF (2014) Formation of adventitious roots and effect of plant growth regulator on the survival rate of Xinjiang wild myrobalan plum cuttings. J China Agricultural University 19:73–79

    Google Scholar 

  • Qiu ZN, Yang HT, Chen WY, Yang Y, Xiao K, Zhu X, Hu JF (2016) Hypersensitive response and evaluation on resistance to Meloidogyne incognita in Xinjiang wild myrobalan plum ( Prunus sogdiana). J China Agricultural University 21:46–52

    Google Scholar 

  • Rodiuc N, Vieira P, Banora MY, de Almeida Engler J (2014) On the track of transfer cell formation by specialized plant-parasitic nematodes. Front Plant Sci 5:160

    PubMed  PubMed Central  Google Scholar 

  • Saucet BS, GhelderVC AP, Duval H, Esmenjaud D (2016) Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytol 211:41–56

    CAS  PubMed  Google Scholar 

  • Shukla N, Yadav R, Kaur P, Rasmussen S, Goel S, Agarwal M, Jagannath A, Gupta R, Kumar A (2018) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol Plant Pathol 19:615–633

    CAS  PubMed  Google Scholar 

  • Starr JL (1993) Dynamics of the nuclear complement of giant cells induced by Meloidogyne incognita. J Nematol 25:416–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarayre S, Vinardell JM, Cebolla A, Kondorosi A, Kondorosi E (2004) Two classes of the CDh1-type activators of the anaphase-promoting complex in plants: novel functional domains and distinct regulation. Plant Cell 16:422–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MA, Wei L, Kaloshian I (2016) Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytol 211:276–287

    CAS  PubMed  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    CAS  PubMed  Google Scholar 

  • Vieira P, Engler G, Janice DAE (2013a) Enhanced levels of plant cell cycle inhibitors hamper root-knot nematode-induced feeding site development. Plant Signal Behav 8:e26409

    PubMed  PubMed Central  Google Scholar 

  • Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N, Mota M, De Veylder L, Abad P, Engler G, de Almeida Engler J (2013b) Ectopic expression of kip-related proteins restrains root-knot nematode-feeding site expansion. New Phytol 199:505–519

    CAS  PubMed  Google Scholar 

  • Vieira P, Kyndt T, Gheysen G, de Almeida Engler J (2013c) An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment. Plant Signal Behav 8:e24223

    PubMed  PubMed Central  Google Scholar 

  • Vieira P, De Clercq A, Stals H, Van Leene J, Van De Slijke E, Van Isterdael G, Eeckhout D, Persiau G, Van Damme D, Verkest A, Antonino de Souza JD, Júnior Glab N, Abad P, Engler G, Inzé D, De Veylder L, De Jaeger G, Engler JD (2014) The cyclin-dependent kinase inhibitor KRP6 induces mitosis and impairs cytokinesis in giant cells induced by plant-parasitic nematodes in Arabidopsis. Plant Cell 26:2633–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GT, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    CAS  PubMed  Google Scholar 

  • Wang L, Xu Z, Liao K, Zhao YS, Zhou L (2006) Study on ecology-biology of wild cherry plum (Prunus divaricata) in Xinjiang. Xinjiang Agric Sci 43:87–95

    Google Scholar 

  • Wiggers RJ, Starr JL, Price HJ (1990) DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M. arenaria. Phytopathology 80:1391–1395

    Google Scholar 

  • Wyss U, Grundler FMW, Munch A (1992) The parasitic behavior of second stage juveniles in Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111

    Google Scholar 

  • Xiao FQ, Hu JF, Xu Z, Liao K, Hu JF (2010) Cloning and expression analysis of fragments related to root-knot nematode resistance from wild Myrobalan plum (Prunus Sogdiana). J China Agricultural University 15:77–83

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31972360).

Author information

Authors and Affiliations

Authors

Contributions

WYC, XFC, and JFH designed experiments; WYC performed the most of the experiments; KX, WYC, and XFC analyzed experimental data; KX, XFC, and XZ performed some experiments; and KX, PYG, and JFH wrote the manuscript.

Corresponding authors

Correspondence to Pingyin Guan or Jianfang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Ulrike Mathesius

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 1124 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Chen, W., Chen, X. et al. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). Protoplasma 257, 1333–1344 (2020). https://doi.org/10.1007/s00709-020-01505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01505-0

Keywords

Navigation