Skip to main content

Advertisement

Log in

Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To improve the safety performance of lithium-ion batteries, the research of composite separator with high temperature resistance is one of the strategies. Herein, a poly(vinylidene fluoride-hexafluoropropylene)/cellulose/carboxylic titanium dioxide (PVDF-HFP/cellulose/C-TiO2) composite separator is prepared by the phase inverse method. The composite separator has higher porosity (63.65%) and electrolyte uptake (210.3%) than PP separator, exhibiting good heat resistance that can keep its shape and size under 160 °C for 0.5 h. Additionally, it has a superior ionic conductivity of 1.24–1.49 mS cm−1 and a lower charge transfer impedance at a room temperature, which brings about better cycle and rate performance. Promisingly, the cell assembled with the PVDF-HFP/cellulose/C-TiO2 composite separator has a high electrochemical working window and a high current charge of ability, and can undergo 10 charge-discharge cycles normally under 120 °C. The PVDF-HFP/cellulose/C-TiO2 composite separator has promising potentials for high current and voltage charging, which can improve the safety performance of the lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang H, Zhou M-Y, Lin C-E, Zhu B-K (2015) Progress in polymeric separators for lithium ion batteries. RSC Adv 5:89848–89860

    Article  CAS  Google Scholar 

  2. Cheng Q, He W, Zhang X, Li M, Song X (2016) Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries. RSC Adv 6:10250–10265

    Article  CAS  Google Scholar 

  3. Lv R, Zhu Y, Liu H, Na B, Huang Y, Xie X (2017) Poly(vinylidene fluoride)/poly(acrylonitrile) blend fibrous membranes by centrifugal spinning for high-performance lithium ion battery separators. J Appl Polymer Sci 134:44515

  4. Lee Y, Park J, Jeon H, Yeon D, Kim B-H, Cho KY, Ryou M-H, Lee YM (2016) In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries. J Power Sources 325:732–738

    Article  CAS  Google Scholar 

  5. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267

    Article  Google Scholar 

  6. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2:197–212

    Article  CAS  Google Scholar 

  7. Lin C-K, Ren Y, Amine K, Qin Y, Chen Z (2013) In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. J Power Sources 230:32–37

    Article  CAS  Google Scholar 

  8. Wei Z, Ren Y, Sokolowski J, Zhu X, Wu G (2020) Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2:483–508

  9. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  10. Cao C, Tan L, Liu W, Ma J, Li L (2014) Polydopamine coated electrospun poly (vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources 248:224–229

    Article  CAS  Google Scholar 

  11. Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333

    Article  CAS  Google Scholar 

  12. Chen W, Shi L, Wang Z, Zhu J, Yang H, Mao X, Chi M, Sun L, Yuan S (2016) Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydr Polym 147:517–524

    Article  CAS  Google Scholar 

  13. Liang X, Yang Y, Jin X, Huang Z, Kang F (2015) The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J Membr Sci 493:1–7

    Article  CAS  Google Scholar 

  14. Yoo J-H, Shin W-K, Koo SM, Kim D-W (2015) Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles. J Power Sources 295:149–155

    Article  CAS  Google Scholar 

  15. Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103

    Article  CAS  Google Scholar 

  16. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    Article  CAS  Google Scholar 

  17. Zhang Y, Wang Z, Xiang H, Shi P, Wang H (2016) A thin inorganic composite separator for lithium-ion batteries. J Membr Sci 509:19–26

    Article  CAS  Google Scholar 

  18. Shi C, Dai J, Shen X, Peng L, Li C, Wang X, Zhang P, Zhao J (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J Membr Sci 517:91–99

    Article  CAS  Google Scholar 

  19. Deng N, Kang W, Liu Y, Ju J, Wu D, Li L, Hassan BS, Cheng B (2016) A review on separators for lithiumsulfur battery: progress and prospects. J Power Sources 331:132–155

    Article  CAS  Google Scholar 

  20. Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose. 24:1889–1899

    Article  CAS  Google Scholar 

  21. Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater 29:1703548

    Article  Google Scholar 

  22. Liao H, Zhang H, Hong H, Li Z, Qin G, Zhu H, Lin Y (2016) Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J Membr Sci 514:332–339

    Article  CAS  Google Scholar 

  23. Guo T, Song J, Jin Y, Sun Z, Li L (2019) Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydr Polym 206:801–810

    Article  CAS  Google Scholar 

  24. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935

    Article  Google Scholar 

  25. Castillo A, Agubra V, Alcoutlabi M, Mao Y (2016) in: APS March Meeting Abstracts

  26. Asghar MR, Zhang Y, Wu A, Yan X, Shen S, Ke C, Zhang J (2018) Preparation of microporous cellulose/poly (vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J Power Sources 379:197–205

    Article  CAS  Google Scholar 

  27. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134

    Article  CAS  Google Scholar 

  28. Cui J, Liu J, He C, Li J, Wu X (2017) Composite of polyvinylidene fluoride–cellulose acetate with Al (OH)3 as a separator for high-performance lithium ion battery. J Membr Sci 541:661–667

    Article  CAS  Google Scholar 

  29. Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P (2018) Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohydr Polym 189:145–151

    Article  CAS  Google Scholar 

  30. Li H, Li L, Zheng S, Wang X, Ma Z (2019) High temperature resistant separator of PVDF-HFP/DBP/C-TiO2 for lithium-ion batteries. Materials. 12:2813

    Article  CAS  Google Scholar 

  31. Ali S, Tan C, Waqas M, Lv W, Wei Z, Wu S, Boateng B, Liu J, Ahmed J, Xiong J (2018) Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries. Adv Mater Interfaces 5:1701147

    Article  Google Scholar 

  32. Li L, Zhang J, Zou Y, Jiang W, Lei W, Ma Z (2019) High-rate and long-term cycle stability of lithium-ion batteries enabled by boron-doping TiO2 nanofiber anodes. J Electroanal Chem 833:573–579

    Article  CAS  Google Scholar 

  33. Luo R, Wang C, Zhang Z, Lv W, Wei Z, Zhang Y, Luo X, He W (2018) Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh rate lithium ion batteries. ACS Appl Energy Mater 1:921–927

    Article  CAS  Google Scholar 

  34. Wang M, Chen X, Wang H, Wu H, Jin X, Huang C (2017) Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J Mater Chem A 5:311–318

    Article  CAS  Google Scholar 

  35. Borisova L, Kiryakova D, Atanassov A (2014) A comparison of two different methods for formation of the beta phase in nanocomposites based on vinylidene fluoride-hexafluoropropylene copolymer. Mater Sci-Pol 32:301–306

    Article  CAS  Google Scholar 

  36. Lin C, Zhang H, Song YZ, Zhang Y, Yuan JJ, Zhu BK (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6:991–998

    Article  CAS  Google Scholar 

  37. Liang T, Cao J H, Liang W H, Li Q, He L, Wu D Y (2019) Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance. RSC Adv 9:41151–41160

  38. Boateng B, Zhu G, Lv W, Chen D, Feng C, Waqas M, Ali S, Wen K, He W (2018) An efficient, scalable route to robust PVDF-co-HFP/SiO2 separator for long-cycle lithium ion batteries. Phys Status Solidi (RRL) Rapid Res Lett 12:1800319

    Article  Google Scholar 

  39. Li W, Li X, Xie X, Yuan A, Xia B (2017) Effect of drying temperature on a thin PVDF-HFP/PET composite nonwoven separator for lithium-ion batteries. Ionics 23:929–935

  40. Deng Y, Song X, Ma Z, Zhang X, Shu D, Nan J (2016) Al2O3/PVDF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim Acta 212:416–425

    Article  CAS  Google Scholar 

  41. Angulakshmi N, Stephan AM (2014) Electrospun trilayer polymeric membranes as separator for lithium–ion batteries. Electrochim Acta 127:167–172

    Article  CAS  Google Scholar 

  42. Zuo X, Ma X, Wu J, Deng X, Xiao X, Liu J, Nan J (2018) Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5V high-voltage lithium-ion batteries. Electrochim Acta 271:582–590

  43. Waqas M, Ali S, Lv W, Chen D, Boateng B, He W (2018) High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries. Adv Mater Interfaces 6:1801330

    Article  Google Scholar 

  44. Jiang Y, Ding Y, Zhang P, Li F, Yang Z (2018) Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage. J Membr Sci 565:33–41

    Article  CAS  Google Scholar 

  45. Waqas M, Tan C, Lv W, Ali S, Boateng B, Chen W, Wei Z, Feng C, Goodenough J, He W (2018) A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries. Chemelectrochem 5:2722–2728

  46. Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (nos. 11872054, 11702234, 11772164, and 51902274).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaizhi Zheng or Zengsheng Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, H., Wang, Y. et al. Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries. Ionics 26, 4489–4497 (2020). https://doi.org/10.1007/s11581-020-03587-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03587-5

Keywords

Navigation