Skip to main content
Log in

Descending Expression of miR320 in Insulin-Resistant Adipocytes Treated with Ascending Concentrations of Metformin

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Some miRNAs are supposed to play a role in insulin resistance and metabolic disorders. Such miRNAs can be differentially expressed in response to a pharmacologic intervention for insulin resistance as a biomarker/risk factor for insulin resistance. This study aimed at determining the effect of Metformin on miR320 expression in insulin-resistant (IR) adipocytes. The 3T3L1 cells were expanded in DMEM, differentiated into adipocytes by differentiating medium, became resistant to insulin, and then were treated with ascending concentrations of Metformin. Quantitative real-time PCR was performed to profile the miR320 expression in 3T3L1 adipocytes, IR adipocytes, and Metformin-treated IR adipocytes. Compared to the normal adipocytes, IR adipocytes exhibited a significantly higher level of miR320 expression, however, in response to Metformin graded concentrations, IR adipocytes down-regulated miR320 and were almost at normal level. The maximum effect of Metformin was at 10 mM. In IR adipocytes, miR320 expression is over-expressed which can be down-regulated by Metformin treatment. The findings provide some information on a potentially new marker to determine insulin resistance and to predict response to insulin resistance therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansari KA, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, Johnson MD et al (2015) Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep 11(6):902–909

    PubMed  PubMed Central  CAS  Google Scholar 

  • Belfiore A, Genua M, Malaguarnera R (2009) PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res 2009:830501

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beltrami C, Emanueli C (2014) Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 9(4c):5

    Google Scholar 

  • Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR (2005) Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 146(8):3622–3631

    PubMed  CAS  Google Scholar 

  • Bruckbauer A, Zemel MB (2013) Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity. Diabetes Metab Syndr Obes 6:93–102

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrabarti FB (2012) MiR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinol 2012:6

    Google Scholar 

  • Chava S, Chennakesavulu S, Gayatri BM, Reddy ABM (2018) A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis 9(7):754

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Lan HY, Roukos DH, Cho WC (2014) Application of microRNAs in diabetes mellitus. Endocrinology 222:R1–R10

    CAS  Google Scholar 

  • Chien HY, Lee TP, Chen CY, Chiu YH, Lin YC, Lee LS et al (2015) Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. Chin Med Assoc 78:20e411

    Google Scholar 

  • Chuang TY, Wu HL, Chen CC, Gamboa GM, Layman LC, Diamond MP et al (2015) MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J Diabetes Res. https://doi.org/10.1155/2015/943659

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen-Solal KA, Boregowda RK, Lasfar A (2015) RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 14:137

    PubMed  PubMed Central  Google Scholar 

  • Deiuliis JA (2015) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes. https://doi.org/10.1038/ijo.2015.170

    Article  Google Scholar 

  • Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L et al (2018) Profiles of circulating mirnas following metformin treatment in patients with type 2 diabetes. J Med Biochem 37:1–7

    Google Scholar 

  • Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in b-cell biology, insulin resistance, diabetes and its complications. Diabetes 60:1825–1831

    PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers E, Aouizerat BE, Abbasi F, Lamendola C, Grove KM, Fukuoka Y et al (2015) Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: moving towards precision health for diabetes prevention. Metabolism 64(9):1051–1059

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA et al (2016) Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm. Endocr Pract 22(1):84–113

    PubMed  Google Scholar 

  • Ge Q, Brichard S, Yi X, Li Q (2014) MicroRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res 2014:10

    Google Scholar 

  • Giannarelli R, Aragona M, Cappelli A, Del Prato S (2003) Reducing insulin resistance with metformin:the evidence today. Diabetes Metab 29:6528–6535

    Google Scholar 

  • Gu H, Xu J, Huang Z, Wu L, Zhou K, Zhang Y et al (2017) Identification and differential expression of microRNAs in 1, 25-dihydroxyvitamin D3-induced osteogenic differentiation of human adipose-derived mesenchymal stem cells. Am J Transl Res 9(11):4856–4871

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L et al (2014) MicroRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis 5:e1499

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hamam D, Ali D, Kassem M, Aldahmash A, Alajez NM (2015) MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 15(24(4)):417–425

    Google Scholar 

  • Honardoost MSM (2014) Insulin resistance associated genes and miRNAs. Appl Biochem Biotechnol 174:63–80

    PubMed  CAS  Google Scholar 

  • Hongmei Z, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes:a meta-analysis of controlled profiling studies. Diabetologia 58:900–911

    Google Scholar 

  • Hooten NN, Martin-Montalvo A, Dluzen DF, Zhang Y, Bernier M, Zonderman AB et al (2016) Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 15:572–581

    Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al (2015) Management of hyperglycemia in type 2 diabetes. Diabetes Care 38:140–149

    PubMed  Google Scholar 

  • Jung DW, Ha HH, Zheng XX, Chang YT, Williams DR (2011) Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effectsw. Mol BioSyst 7:346–358

    PubMed  CAS  Google Scholar 

  • Katsura A, Morishita A, Iwama H, Tani J, Sakamoto T, Tatsuta M et al (2015) MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis. Int J Mol Med 35(4):877–884

    PubMed  PubMed Central  CAS  Google Scholar 

  • Laxman N, Mallmin H, Nilsson O, Kindmark A (2016) miR-203 and miR-320 regulate bone morphogenetic protein-2-induced osteoblast differentiation by targeting distal-less homeobox 5 (Dlx5). Genes (Basel) 8(1):E4

    Google Scholar 

  • Lee JO, Lee SK, Kim SJ, Kim N, You GY, Moon JW et al (2012) Metformin regulates glucose transporter 4 (GLUT4)translocation through AMP-activated protein kinase(AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem 287(53):44121–44129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F (2009) Cross-talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Res 2009:818945

    PubMed  Google Scholar 

  • Li H, Li T, Wang S, Wei J, Fan J, Li J et al (2013) MiR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 10(3):313–324

    PubMed  CAS  Google Scholar 

  • Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX et al (2009) Changes in microrna (mir) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clin Exp Pharmacol Physiol 36:e32–e39

    PubMed  CAS  Google Scholar 

  • Liu LF, Shen WJ, Zhang ZH, Wang LJ, Kraemer FB (2010) Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J Cell Physiol 225(3):837–845

    PubMed  CAS  Google Scholar 

  • Mao Y, Mohan R, Zhang SH, Tang X (2013) MicroRNAs as pharmacological targets in diabetes. Pharmacol Res 75:37–47

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Sanchez A, Nguyen-Tu MS, Cebola I, Yavari A, Marchetti P, Piemonti L et al (2018) MiR-184 expression is regulated by AMPK in pancreatic islets. FASEB J 32(5):2587–2600

    PubMed  PubMed Central  Google Scholar 

  • Mehra A, Macdonald I, Pillay TS (2007) Variability in 3T3-L1 adipocyte differentiation depending on cell culture dish. Anal Biochem 362:281–283

    PubMed  CAS  Google Scholar 

  • Nelson BA, Robinson KA, Buse MG (2000) High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 49:981–991

    PubMed  CAS  Google Scholar 

  • Peng X, Chen R, Wu Y, Huang B, Tang C, Chen J et al (2015) PPARγ-PI3K/AKT-NO signal pathway is involved in cardiomyocyte hypertrophy induced by high glucose and insulin. J Diabetes Complic 29(6):755–760

    Google Scholar 

  • Riera MF, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB (2009) Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation. Am J Physiol Endocrinol Metab 297(4):E907–E914

    PubMed  CAS  Google Scholar 

  • Son YH, Ka S, Kim AY, Kim JB (2014) Regulation of adipocyte differentiation via MicroRNAs. Endocrinol Metab (Seoul) 29(2):122–135

    Google Scholar 

  • Sozio MS, Lu C, Zeng Y, Liangpunsakul S, Crabb DW (2011) Activated AMPK inhibits PPAR-α and PPAR-γ transcriptional activity in hepatoma cells. Am J Physiol Gastrointest Liver Physiol 301(4):G739–G747

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stechschulte LA, Lecka-Czernik B (2017) Reciprocal regulation of PPARγ and RUNX2 activities in marrow mesenchymal stem cells: fine balance between p38 MAPK and Protein Phosphatase 5. Curr Mol Biol Rep 3(2):107–113

    PubMed  PubMed Central  Google Scholar 

  • Tao R, Gong J, Luo X, Zang M, Guo W, Wen R et al (2010) AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 5(1):1

    PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, Williams MG, Frost SC (1997) Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem 272(12):7759–7764

    PubMed  CAS  Google Scholar 

  • Tian Y, Nan Y, Han L, Zhang A, Wang G, Jia Z (2012) MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int J Oncol 40(4):1105–1112

    PubMed  CAS  Google Scholar 

  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122(6):253–270

    CAS  Google Scholar 

  • Vishwanath D, Srinivasan H, Patil MS, Seetarama S, Agrawal SK, Dixit MN et al (2013) Novel method to differentiate 3T3 L1 cells in vitro to produce highly sensitive adipocytes for a GLUT4 mediated glucose uptake using fluorescent glucose analog. J Cell Commun Signal 7:129–140

    PubMed  PubMed Central  Google Scholar 

  • Weiland M, Schurmann A, Schmidt WE, Joost HG (1990) Development of the hormone-sensitive glucose transport activity in differentiating 3T3-L1 murine fibroblasts. Biochem J 270:331–336

    PubMed  PubMed Central  CAS  Google Scholar 

  • Williams MD, Mitchell MG (2012) MicroRNAs in insulin resistance and obesity. Diabetes Res 484696:8

    Google Scholar 

  • Xu G, Ji C, Song G, Zhao C, Shi C, Song L et al (2015) MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int J Obes 39:1523–1540

    CAS  Google Scholar 

  • Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425:88–90

    PubMed  CAS  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Biochemistry and Molecular Biology in School of Medicine laboratories personnel for their cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mohiti-Ardakani.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghiaee, Y., Didehdar, R., Malekpour-Dehkordi, Z. et al. Descending Expression of miR320 in Insulin-Resistant Adipocytes Treated with Ascending Concentrations of Metformin. Biochem Genet 58, 661–676 (2020). https://doi.org/10.1007/s10528-020-09964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-09964-z

Keywords

Navigation