Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney dendritic cells: fundamental biology and functional roles in health and disease

Abstract

Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.

Key points

  • Dendritic cells and macrophages constitute the most abundant component of the intrarenal immune system, but current tools and subset markers do not discriminate them clearly.

  • Modern sequencing methods, imaging mass cytometry and bioinformatic analysis allow superior classification and investigation of dendritic cells; these techniques have revealed that more subsets and functional states exist than previously thought.

  • Dendritic cells are sentinels that constantly survey the kidney microenvironment for injury or infection; they recruit and regulate immune effector cells such as macrophages, T cells and neutrophils to protect the host.

  • In acute kidney injury, kidney DCs are initially anti-inflammatory and limit immune-induced damage.

  • When kidney inflammation becomes chronic, dendritic cells undergo functional changes and might promote progression of kidney disease.

  • Dendritic cells might be modified therapeutically by targeting the chemokines that regulate their migration or the transcription factors that control their development and/or differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mononuclear phagocyte ontogeny and subsets.
Fig. 2: Migration of kidney DCs.
Fig. 3: Location of dendritic cells in the kidney.
Fig. 4: DCs regulate kidney disease through crosstalk with immune effector cells.
Fig. 5: Roles of DC function throughout the course of crescentic glomerulonephritis.

Similar content being viewed by others

References

  1. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nelson, P. J. et al. The renal mononuclear phagocytic system. J. Am. Soc. Nephrol. 23, 194–203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hume, D. A. & Gordon, S. Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J. Exp. Med. 157, 1704–1709 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaissling, B. & Le Hir, M. Characterization and distribution of interstitial cell types in the renal cortex of rats. Kidney Int. 45, 709–720 (1994). This study provided the first evidence that cells with dendritic morphology are present in the kidney tubulointerstitium.

    Article  CAS  PubMed  Google Scholar 

  6. Kruger, T. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J. Am. Soc. Nephrol. 15, 613–621 (2004). This report includes the first functional identification of kidney CD11c + MHC II + cells as DCs.

    Article  PubMed  Google Scholar 

  7. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gottschalk, C. & Kurts, C. The debate about dendritic cells and macrophages in the kidney. Front. Immunol. 6, 435 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maldonado, R. A. & von Andrian, U. H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol. 108, 111–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heath, W. R. & Carbone, F. R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014). This article proposed a new nomenclature system for mononuclear phagocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Dutertre, C. A., Wang, L. F. & Ginhoux, F. Aligning bona fide dendritic cell populations across species. Cell. Immunol. 291, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki, S. et al. CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181, 6923–6933 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Gotot, J. et al. Antigen-specific Helios, Neuropilin-1 Tregs induce apoptosis of autoreactive B cells via PD-L1. Immunol. Cell Biol. 96, 852–862 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  Google Scholar 

  24. Belz, G. T. et al. The CD8a+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurts, C., Robinson, B. W. & Knolle, P. A. Cross-priming in health and disease. Nat. Rev. Immunol. 10, 403–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hume, D. A., Irvine, K. M. & Pridans, C. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 40, 98–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Dutertre, C. A. et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51, 573–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Dress, R. J. et al. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20, 852–864 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues, P. F. et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19, 711–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017). This study demonstrated that the commitment of haematopoetic stem cells to cDC1 or cDC2 lineages starts in the bone marrow, not in the periphery.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Grajales-Reyes, G. E. et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha+ conventional DC clonogenic progenitor. Nat. Immunol. 16, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alvarez, D., Vollmann, E. H. & von Andrian, U. H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Worbs, T., Hammerschmidt, S. I. & Forster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Nakano, H., Lyons-Cohen, M. R., Whitehead, G. S., Nakano, K. & Cook, D. N. Distinct functions of CXCR4, CCR2, and CX3CR1 direct dendritic cell precursors from the bone marrow to the lung. J. Leukoc. Biol. 101, 1143–1153 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi, Q. et al. Single-cell analyses reveal functional classification of dendritic cells and their potential roles in inflammatory disease. FASEB J. 33, 3784–3794 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Scott, C. L. et al. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8, 327–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999). This seminal report demonstrated the unique role of CCR7 in the migration of DCs.

    Article  CAS  PubMed  Google Scholar 

  49. Kiermaier, E. et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351, 186–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. MartIn-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sokol, C. L., Camire, R. B., Jones, M. C. & Luster, A. D. The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. Immunity 49, 449–463 e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Acton, S. E. et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 514, 498–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maarouf, O. H. et al. Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight 3, 120546 (2018).

    Article  PubMed  Google Scholar 

  55. Tittel, A. P. et al. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat. Methods 9, 385–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Blijswijk, J. et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J. Immunol. 194, 307–315 (2015).

    Article  PubMed  CAS  Google Scholar 

  59. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McKenna, H. J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Baerenwaldt, A. et al. Flt3 ligand regulates the development of innate lymphoid cells in fetal and adult mice. J. Immunol. 196, 2561–2571 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Evers, B. D. et al. CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL-10-producing regulatory T cells. J. Am. Soc. Nephrol. 27, 3368–3382 (2016). This report demonstrated that kidney cDC1s are anti-inflammatory and elucidated some of the underlying mechanisms involved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brahler, S. et al. Opposing roles of dendritic cell subsets in experimental GN. J. Am. Soc. Nephrol. 29, 138–154 (2018). This study used advanced methodology to clarify which kidney CD11c + cells are cDC1s, cDC2s or macrophages.

    Article  CAS  PubMed  Google Scholar 

  64. Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362, 694–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamazaki, C. et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J. Immunol. 190, 6071–6082 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Dorner, B. G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Kawakami, T. et al. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J. Immunol. 191, 3358–3372 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Soos, T. J. et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 70, 591–596 (2006). This study demonstrated the abundance of kidney mononuclear phagocytes that express the chemokine receptor CX 3CR1.

    Article  CAS  PubMed  Google Scholar 

  69. Kim, K. W. et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118, e156–e167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kassianos, A. J. et al. Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int. 87, 1153–1163 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hochheiser, K. et al. Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J. Clin. Invest. 123, 4242–4254 (2013). This report demonstrated that DCs in the kidney, but not in most other organs, depend on the chemokine receptor CX 3CR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schraml, B. U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154, 843–858 (2013). This study reported the first application of genetic cell lineage tracing to clarify which kidney mononuclear cells are derived from DC precursor cells.

    Article  CAS  PubMed  Google Scholar 

  74. Salei, N. et al. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J. Am. Soc. Nephrol. 31, 257–278 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Berry, M. R. et al. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170, 860–874.e19 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, W. C. et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 25, 893–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Binger, K. J. et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Neubert, P. et al. HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting. Autophagy 15, 1899–1916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Popovic, Z. V. et al. Hyperosmolarity impedes the cross-priming competence of dendritic cells in a TRIF-dependent manner. Sci. Rep. 7, 311 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chessa, F. et al. The renal microenvironment modifies dendritic cell phenotype. Kidney Int. 89, 82–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Rogers, N. M., Matthews, T. J., Kausman, J. Y., Kitching, R. A. & Coates, P. T. Review article: kidney dendritic cells: their role in homeostasis, inflammation and transplantation. Nephrology 14, 625–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Woltman, A. M. et al. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int. 71, 1001–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lukacs-Kornek, V. et al. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. J. Immunol. 180, 706–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. McIntosh, G. H. & Morris, B. The lymphatics of the kidney and the formation of renal lymph. J. Physiol. 214, 365–376 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Russell, P. S., Hong, J., Windsor, J. A., Itkin, M. & Phillips, A. R. J. Renal lymphatics: anatomy, physiology, and clinical implications. Front. Physiol. 10, 251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gottschalk, C. et al. Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J. Am. Soc. Nephrol. 24, 543–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tiberio, L. et al. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol. Immunol. 15, 346–352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chung, A. C. & Lan, H. Y. Chemokines in renal injury. J. Am. Soc. Nephrol. 22, 802–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Coates, P. T. et al. CCR and CC chemokine expression in relation to Flt3 ligand-induced renal dendritic cell mobilization. Kidney Int. 66, 1907–1917 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Brix, S. R. et al. CC chemokine ligand 18 in ANCA-associated crescentic GN. J. Am. Soc. Nephrol. 26, 2105–2117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liao, X. et al. Renal-infiltrating CD11c+ cells are pathogenic in murine lupus nephritis through promoting CD4+ T cell responses. Clin. Exp. Immunol. 190, 187–200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schiwon, M. et al. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156, 456–468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bachelerie, F. et al. New nomenclature for atypical chemokine receptors. Nat. Immunol. 15, 207–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Lux, M. et al. The atypical chemokine receptor 2 limits progressive fibrosis after acute ischemic kidney injury. Am. J. Pathol. 189, 231–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Albanesi, C. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med. 206, 249–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Palma, G. et al. The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int. 79, 1228–1235 (2011).

    Article  PubMed  CAS  Google Scholar 

  100. Segura, E. & Soumelis, V. Of human DC migrants and residents. Immunity 46, 342–344 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Tomura, M. New tools for imaging of immune systems: visualization of cell cycle, cell death, and cell movement by using the mice lines expressing Fucci, SCAT3.1, and Kaede and KikGR. Methods Mol. Biol. 1763, 165–174 (2018).

    Article  PubMed  Google Scholar 

  102. Scholz, J. et al. Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J. Am. Soc. Nephrol. 19, 527–537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tittel, A. P. et al. Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J. Am. Soc. Nephrol. 22, 1435–1441 (2011). This study demonstrated that kidney DCs sense pyelonephritis and recruit protective granulocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Kitamoto, K. et al. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J. Pharmacol. Sci. 111, 285–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Misseri, R. et al. TNF-alpha mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am. J. Physiol. Ren. Physiol. 288, F406–F411 (2005).

    Article  CAS  Google Scholar 

  107. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lonnemann, G. et al. Cytokines in human renal interstitial fibrosis. I. Interleukin-1 is a paracrine growth factor for cultured fibrosis-derived kidney fibroblasts. Kidney Int. 47, 837–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, A. et al. Bowman’s capsule provides a protective niche for podocytes from cytotoxic CD8+ T cells. J. Clin. Invest. 128, 3413–3424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Castellano, G. et al. Infiltrating dendritic cells contribute to local synthesis of C1q in murine and human lupus nephritis. Mol. Immunol. 47, 2129–2137 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Batal, I. et al. Analysis of dendritic cells and ischemia-reperfusion changes in postimplantation renal allograft biopsies may serve as predictors of subsequent rejection episodes. Kidney Int. 93, 1227–1239 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Bohle, A., Kressel, G., Muller, C. A. & Muller, G. A. The pathogenesis of chronic renal failure. Pathol. Res. Pract. 185, 421–440 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Kassianos, A. J. et al. Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A+ and CD1c+ myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease. Am. J. Physiol. Ren. Physiol. 305, F1391–F1401 (2013).

    Article  CAS  Google Scholar 

  115. Dong, X. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 71, 619–628 (2007). This report showed that kidney DCs sense tissue injury induced by ischaemia–reperfusion and produce pro-inflammatory mediators.

    Article  CAS  PubMed  Google Scholar 

  116. Schlichting, C. L., Schareck, W. D. & Weis, M. Renal ischemia-reperfusion injury: new implications of dendritic cell-endothelial cell interactions. Transplant. Proc. 38, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180, 4697–4705 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, L., Sharkey, D. & Cantley, L. G. Tubular GM-CSF Promotes Late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury. J. Am. Soc. Nephrol. 30, 1825–1840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferhat, M. et al. Endogenous IL-33 contributes to kidney ischemia-reperfusion injury as an alarmin. J. Am. Soc. Nephrol. 29, 1272–1288 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dong, X. et al. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int. 68, 1096–1108 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Burne-Taney, M. J. et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am. J. Physiol. Ren. Physiol. 285, F87–F94 (2003).

    Article  CAS  Google Scholar 

  122. Ysebaert, D. K. et al. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 66, 491–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, H. & Seed, B. The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3. Nat. Immunol. 11, 743–750 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cho, W. Y. et al. The role of Tregs and CD11c+ macrophages/dendritic cells in ischemic preconditioning of the kidney. Kidney Int. 78, 981–992 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Lech, M. et al. Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J. Immunol. 183, 4109–4118 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Merad, M., Collin, M. & Bromberg, J. Dendritic cell homeostasis and trafficking in transplantation. Trends Immunol. 28, 353–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Siu, J. H. Y., Surendrakumar, V., Richards, J. A. & Pettigrew, G. J. T cell allorecognition pathways in solid organ transplantation. Front. Immunol. 9, 2548 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Dai, H., Thomson, A. W. & Rogers, N. M. Dendritic cells as sensors, mediators, and regulators of ischemic injury. Front. Immunol. 10, 2418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zuidwijk, K. et al. Increased influx of myeloid dendritic cells during acute rejection is associated with interstitial fibrosis and tubular atrophy and predicts poor outcome. Kidney Int. 81, 64–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, V. M., Womer, K. L. & Sayegh, M. H. Transplantation tolerance: the concept and its applicability. Pediatr. Transplant. 3, 181–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Zhuang, Q. et al. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection. Nat. Commun. 7, 12623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Snelgrove, S. L. et al. Activated renal dendritic cells cross present intrarenal antigens after ischemia-reperfusion injury. Transplantation 101, 1013–1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Ruben, J. M. et al. Human plasmacytoid dendritic cells acquire phagocytic capacity by TLR9 ligation in the presence of soluble factors produced by renal epithelial cells. Kidney Int. 93, 355–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Ezzelarab, M. B. et al. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am. J. Transplant. 13, 1989–2005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ezzelarab, M. B., Lu, L., Shufesky, W. F., Morelli, A. E. & Thomson, A. W. Donor-derived regulatory dendritic cell infusion maintains donor-reactive CD4+CTLA4hi T cells in non-human primate renal allograft recipients treated with CD28 co-stimulation blockade. Front. Immunol. 9, 250 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ochando, J., Ordikhani, F., Jordan, S., Boros, P. & Thomson, A. W. Tolerogenic dendritic cells in organ transplantation. Transpl. Int. 33, 113–127 (2020).

    Article  PubMed  Google Scholar 

  137. Tadagavadi, R. K. & Reeves, W. B. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 21, 53–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Perazella, M. A. Diagnosing drug-induced AIN in the hospitalized patient: a challenge for the clinician. Clin. Nephrol. 81, 381–388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Izzedine, H. & Perazella, M. A. Anticancer drug-induced acute kidney injury. Kidney Int. Rep. 2, 504–514 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cheng, M., Gu, X. & Herrera, G. A. Dendritic cells in renal biopsies of patients with acute tubulointerstitial nephritis. Hum. Pathol. 54, 113–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Karkar, A. M. & Rees, A. J. Influence of endotoxin contamination on anti-GBM antibody induced glomerular injury in rats. Kidney Int. 52, 1579–1583 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Grinberg-Bleyer, Y. et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170, 1096–1108.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heuser, C. et al. Prolonged IKKbeta inhibition improves ongoing CTL antitumor responses by incapacitating regulatory T cells. Cell Rep. 21, 578–586 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Gotot, J. et al. Inhibitor of NFkappaB kinase subunit 2 blockade hinders the initiation but aggravates the progression of crescentic GN. J. Am. Soc. Nephrol. 27, 1917–1924 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Wolf, D. et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J. Am. Soc. Nephrol. 16, 1360–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Paust, H. J. et al. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int. 80, 154–164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ooi, J. D. et al. Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney Int. 79, 977–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Kluger, M. A. et al. Stat3 programs Th17-specific regulatory T cells to control GN. J. Am. Soc. Nephrol. 25, 1291–1302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, R. et al. Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell-mediated T cell activation. Nephrol. Dial. Transplant. 34, 1853–1863 (2018).

    Article  Google Scholar 

  150. Kitagawa, K. et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Pathol. 165, 237–246 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Snelgrove, S. L. et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am. J. Pathol. 180, 91–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Engel, D. R. et al. CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages. J. Immunol. 194, 1628–1638 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Eddy, A. A. Interstitial macrophages as mediators of renal fibrosis. Exp. Nephrol. 3, 76–79 (1995).

    CAS  PubMed  Google Scholar 

  154. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J. Clin. Invest. 123, 236–246 (2013). This study provided the first evidence that intrarenal crystal formation injures the kidney by activating the inflammasome in kidney DCs.

    Article  CAS  PubMed  Google Scholar 

  155. Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Martin-Higueras, C., Torres, A. & Salido, E. Molecular therapy of primary hyperoxaluria. J. Inherit. Metab. Dis. 40, 481–489 (2017).

    Article  PubMed  Google Scholar 

  157. Correa-Costa, M. et al. Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS One 6, e29004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dinarello, C. A. IL-1: discoveries, controversies and future directions. Eur. J. Immunol. 40, 599–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Alexander, J. J. et al. CD11b is protective in complement-mediated immune complex glomerulonephritis. Kidney Int. 87, 930–939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tucci, M. et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 58, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Devarapu, S. K. & Anders, H. J. Toll-like receptors in lupus nephritis. J. Biomed. Sci. 25, 35 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Trotter, K., Clark, M. R. & Liarski, V. M. Overview of pathophysiology and treatment of human lupus nephritis. Curr. Opin. Rheumatol. 28, 460–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mattson, D. L. Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat. Rev. Nephrol. 15, 290–300 (2019).

    Article  PubMed  Google Scholar 

  170. Weiss, S. et al. The complement receptor C5aR1 contributes to renal damage but protects the heart in angiotensin II-induced hypertension. Am. J. Physiol. Ren. Physiol. 310, F1356–F1365 (2016).

    Article  CAS  Google Scholar 

  171. Lu, X. et al. Classical dendritic cells mediate hypertension by promoting renal oxidative stress and fluid retention. Hypertension 75, 131–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Van Beusecum, J. P. et al. High salt activates CD11c+ antigen-presenting cells via SGK (Serum Glucocorticoid Kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74, 555–563 (2019).

    Article  PubMed  CAS  Google Scholar 

  174. Ahadzadeh, E. et al. The chemokine receptor CX3CR1 reduces renal injury in mice with angiotensin II-induced hypertension. Am. J. Physiol. Ren. Physiol. 315, F1526–F1535 (2018).

    Article  CAS  Google Scholar 

  175. Yu, Y. et al. Characterization of early-phase neutrophil extracellular traps in urinary tract infections. PLoS Pathog. 13, e1006151 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Disteldorf, E. M. et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J. Am. Soc. Nephrol. 26, 55–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Engel, D. et al. TNF{alpha}/iNOS-producing dendritic cells are rapidly recruited to the bladder in urinary tract infection, but are dispensable for bacterial clearance. Infect. Immun. 74, 6100–6107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Jantsch, J. et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 21, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rakova, N. et al. Increased salt consumption induces body water conservation and decreases fluid intake. J. Clin. Invest. 127, 1932–1943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Jobin, K. et al. A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Sci. Transl Med. 12, eaay3850 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Lionakis, M. S. et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest. 123, 5035–5051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kulkarni, O. P. et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25, 978–989 (2014). This study showed, for the first time, that kidney DCs induce repair mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Weidenbusch, M. et al. IL-22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiol. Rep. 6, e13817 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Wang, S. et al. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis. 8, e2937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, X. et al. Increased interleukin-22 levels in lupus nephritis and its associated with disease severity: a study in both patients and lupus-like mice model. Clin. Exp. Rheumatol. 37, 400–407 (2019).

    PubMed  Google Scholar 

  188. Gnirck, A. C. et al. Endogenous IL-22 is dispensable for experimental glomerulonephritis. Am. J. Physiol. Ren. Physiol. 316, F712–F722 (2019).

    Article  CAS  Google Scholar 

  189. Segerer, S. et al. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int. 74, 37–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Mueller, F. B. et al. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts. JCI Insight 4, e128014 (2019).

    Article  PubMed Central  Google Scholar 

  191. Wang, Y. et al. High renal DC-SIGN+ cell density is associated with severe renal lesions and poor prognosis in patients with immunoglobulin A nephropathy. Histopathology 74, 744–758 (2019).

    Article  PubMed  Google Scholar 

  192. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Singh, N. et al. Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. JCI Insight 4, 129477 (2019).

    Article  PubMed  Google Scholar 

  194. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Regev, A. et al. The human cell atlas. eLife 6, 27041 (2017).

    Article  Google Scholar 

  197. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Page, G., Lebecque, S. & Miossec, P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. 168, 5333–5341 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Pashenkov, M. et al. Elevated expression of CCR5 by myeloid (CD11c+) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clin. Exp. Immunol. 127, 519–526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  PubMed  CAS  Google Scholar 

  203. Wendland, M. et al. CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl Acad. Sci. USA 104, 6347–6352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tipping, P. G. & Holdsworth, S. R. T cells in crescentic glomerulonephritis. J. Am. Soc. Nephrol. 17, 1253–1263 (2006).

    Article  PubMed  Google Scholar 

  205. Hochheiser, K. et al. Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J. Am. Soc. Nephrol. 22, 306–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Xiao, X. et al. Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J. Autoimmun. 32, 85–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Turner, J. E. et al. IL-17A production by renal gammadelta T cells promotes kidney injury in crescentic GN. J. Am. Soc. Nephrol. 23, 1486–1495 (2012). This study provided the first demonstration that pathogenic IL-17 and T H17 cell immune responses depend on the production of IL-23 by kidney DCs in glomerulonephritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-Receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Turner, J. E. et al. CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis. J. Am. Soc. Nephrol. 21, 974–985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work could not be cited owing to space restrictions. We thank C. Meyer Schwesinger for providing images of kidney DCs and C. Krebs for help with Fig. 5. C.K. was supported by the Deutsche Forschungsgemeinschaft (Gottfried-Wilhelm Leibniz Award, SFB1192 project A8, SFBTR57 project 10, Germany’s Excellence Strategy EXC 2151-390873048), and the European Union Horizon 2020 research and innovation programme (grant agreement 668036 ʻRELENTʼ). F.G. was supported by the core funding of the Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR). U.P. was supported by the Deutsche Forschungsgemeinschaft SFB1192 project A1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Christian Kurts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks J. Ooi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tolerance

A process whereby potentially harmful autoimmune responses driven by self-reactive immune cells are limited; for example, DCs that present autoantigens can induce apoptosis of self-reactive T cells.

Cross-presentation

The uptake, processing and presentation of extracellular antigens on major histocompatibility complex class I to CD8 T cells.

Fibroblastic reticular cells

Cells that produce a scaffold of dense fibres within lymphoid tissue and regulate lymphocytes through the production of cytokines.

Bone marrow chimaeras

Mice that have been irradiated and then transplanted with bone marrow cells from a different animal.

Dendrites

Cell surface protrusions reminiscent of tree (dendron) branches that gave dendritic cells their name; these protrusions increase the cell surface area and permit interaction with many T cells.

Bulk draining

Cell-independent transport of antigens from an organ to its draining lymph node by lymph flow.

Transcytosis

A type of transcellular transport whereby macromolecules are endocytosed, transported in vesicles across the interior of a cell and exocytosed.

M2-associated genes

Genes expressed by anti-inflammatory, regenerative macrophages.

Tolerogenic DCs

Dendritic cells that induce T cell tolerance.

Cellular hypersensitivity

Exaggerated inflammatory responses mediated by immune cells that result in tissue injury.

Neoantigens

Novel antigens not previously present in an organism; such antigens can result, for example, from genetic mutations in malignant cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 16, 391–407 (2020). https://doi.org/10.1038/s41581-020-0272-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0272-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing