Skip to main content
Log in

Thermal and Elastic Characterization of Nanostructured Fe2O3 Polymorphs and TiO2-Coated Fe2O3 Using Open Photoacoustic Cell

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

α-Fe2O3 and ε-Fe2O3 thin-film hematite polymorphs, as well as Fe2O3 polymorphs’ thin films coated with TiO2 nanolayer, all deposited on Si substrate plates, were investigated by an open photoacoustic cell set-up within the 20 Hz–20 kHz modulation frequency range. Theoretical analysis of experimental results was based on a two-layer model which includes both substrate and thin-film parameters. For different combinations of the substrate and polymorphic layer, noticeable differences in the total photoacoustic signals are observed at high-frequency range (> 1 kHz), mainly due to elastic bending effect. It was also observed that an ultra-thin TiO2 surface layer deposited on polymorphs influences the signal of the whole structure, which is attributed to the changed quality of sample surfaces. Presented experimental results and theoretical analysis demonstrate the suitability of open PA cell technique to determine thermal parameters of thin two-layer materials and detect minute differences in their structures originating either from the native structure of the material or from the deposition of ultra-thin coatings. High reproducibility of the photoacoustic measurements and good agreement with values reported in literature and with previous experiments were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Rosencwaig, A. Gersho, Theory of the photoacoustic effect with solids. J. App. Phys. 47, 64 (1976). https://doi.org/10.1063/1.322296

    Article  ADS  Google Scholar 

  2. A.C. Tam, Application of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–426 (1986). https://doi.org/10.1103/RevModPhys.58.381

    Article  ADS  Google Scholar 

  3. H. Huan, L. Liu, A. Mandelis et al., Mechanical strength evaluation of elastic materials by multiphysical nondestructive methods: a review. Appl. Sci. 10, 1588 (2020). https://doi.org/10.3390/app10051588

    Article  Google Scholar 

  4. G.P. Pardo, A.D. Pacheco, S.A. Tomás et al., Characterization of aged lettuce and chard seeds by photothermal techniques. Int. J. Thermophys. 39, 118 (2018). https://doi.org/10.1007/s10765-018-2438-4

    Article  ADS  Google Scholar 

  5. P. Duchene, S. Chaki, A. Ayadi et al., A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 53, 7915–7938 (2018). https://doi.org/10.1007/s10853-018-2045-6

    Article  ADS  Google Scholar 

  6. E. Petronijevic, G. Leahu, A. Belardini et al., Resonant absorption in GaAs-based nanowires by means of photo-acoustic spectroscopy. Int. J. Thermophys. 39, 45 (2018). https://doi.org/10.1007/s10765-018-2365-4

    Article  ADS  Google Scholar 

  7. S. Galović, Z. Šoškić, M. Popović, D. Čevizović, Z. Stojanović, Theory of photoacoustic effect in media with thermal memory. J. Appl. Phys. 116, 024901 (2014)

    Article  ADS  Google Scholar 

  8. F.R. Lamastra, M.L. Grilli, G. Leahu et al., Photoacoustic spectroscopy investigation of zinc oxide/diatom frustules hybrid powders. Int. J. Thermophys. 39, 110 (2018). https://doi.org/10.1007/s10765-018-2428-6

    Article  ADS  Google Scholar 

  9. H. Vargas, L.C.M. Miranda, Photothermal techniques applied to thermophysical properties measurements. Rev. Sci. Inst. 74, 794–799 (2003). https://doi.org/10.1063/1.1519682

    Article  ADS  Google Scholar 

  10. D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasovic, M. Chirtoc, D.M. Todorovic, S.E. Bialkowski, D. Korte, M. Franko, Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. Eur. Phys. J. Plus 132, 33 (2017). https://doi.org/10.1140/epjp/i2017-11307-2

    Article  Google Scholar 

  11. M.V. Marquezini, N. Cella, A.M. Mansanares, H. Vargas, L.C.M. Miranda, Open photoacoustic cell spectroscopy. Meas. Sci. Tech. 2, 396 (1991). https://doi.org/10.1088/0957-0233/2/4/020

    Article  ADS  Google Scholar 

  12. D.M. Todorovic, M.D. Rabasovic, D.D. Markushev, Photoacoustic elastic bending in thin film—substrate system: experimental determination of the thin film parameters. J. App. Phys. 116, 053506 (2014). https://doi.org/10.1063/1.4890346

    Article  ADS  Google Scholar 

  13. L. Olenka, A.N. Medina, M.L. Baesso, A.C. Bento, A.F. Rubira, Monitoring the depth penetration of dyes in poly (ethylene terephthalate) films using a two layer based photoacoustic model. Braz. J. Phys. 32, 2b (2002)

    Article  Google Scholar 

  14. S.A. Tomás, A. Cruz-Orea, S. Stolik et al., Determination of the thermal diffusivity of edible films. Int. J. Thermophys. 25, 611 (2004). https://doi.org/10.1023/B:IJOT.0000028494.54816.e6

    Article  ADS  Google Scholar 

  15. G.C. Nelson Astrath, B.G. Francine Astrath, J. Shen et al., An open-photoacoustic-cell method for thermal characterization of a two-layer system. J. App. Phys. 107, 043514 (2010). https://doi.org/10.1063/1.3310319

    Article  ADS  Google Scholar 

  16. E. Welsch, D. Ristau, Photothermal measurements on optical thin films. App. Opt. 34, 7239–7253 (1995). https://doi.org/10.1364/AO.34.007239

    Article  ADS  Google Scholar 

  17. K.L. Muratikov, A.L. Glazov, Theoretical and experimental investigation of the photoacoustic effect in solids with residual stresses. Cen. Eur. J. Phys. 1, 485 (2003). https://doi.org/10.2478/BF02475859

    Article  Google Scholar 

  18. V. Lihong Wang, Photoacoustic imaging and spectroscopy (CRC Press, Boca Raton, 2009). ISBN 978-1-4200-5991-5

    Google Scholar 

  19. Pattnaik Prasant Kumar, Swetapadma Aleena, Sarraf Jay, Expert System Techniques in Biomedical Science Practice, IGI Global 2018, ISSN: 2327-7033, eISSN: 2327-7041

  20. Z. Xue-Hao, C. Dong-Bing, J. Lei et al., Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging. Nano Lett. 20, 1286–1295 (2020). https://doi.org/10.1021/acs.nanolett.9b04752?goto=supporting-info

    Article  ADS  Google Scholar 

  21. M.A. Flores-Mendoza, R. Castanedo-Pérez, G. Torres-Delgado et al., Surface recombination velocity dependence on morphological properties of CdTe thin films prepared by close-spaced sublimation. Int. J. Thermophys. 34, 1746–1753 (2013). https://doi.org/10.1007/s10765-013-1522-z

    Article  ADS  Google Scholar 

  22. D.M. Todorovic, M.D. Rabasovic, D.D. Markushev, Photoacostic elastic bending in thin film—substrate system. J. App. Phys. 114, 21350 (2013). https://doi.org/10.1063/1.4839835

    Article  Google Scholar 

  23. J. Zakrzewski, K. Strzałkowski, M. Maliński et al., Two-layer model in piezoelectric photothermal spectra of CdTe crystals. Int. J. Thermophys. 40, 56 (2019). https://doi.org/10.1007/s10765-019-2521-5

    Article  ADS  Google Scholar 

  24. H.F. Abosheiasha, S.T. Assar, M.K. El Nimr, Photoacoustic measurement of thermal properties of Co–Ni–Li ferrite nanoparticles. Int. J. Thermophys. 34, 1080–1090 (2013). https://doi.org/10.1007/s10765-013-1471-6

    Article  ADS  Google Scholar 

  25. L. Bychto, M. Maliński, Determination of the optical absorption coefficient spectra of thin semiconductor layers from their photoacoustic spectra. Int. J. Thermophys. 39, 103 (2018). https://doi.org/10.1007/s10765-018-2424-x

    Article  ADS  Google Scholar 

  26. J.A. Balderas-Lopez, A. Mandelis, J.A. Garcıa, Normalized photoacoustic techniques for thermal diffusivity measurements of buried layers in multilayered systems. J. App. Phys. 92, 3047 (2013). https://doi.org/10.1063/1.1500784

    Article  ADS  Google Scholar 

  27. P. Garcia-Muñoz, F. Fresno, V.A. de la Peña O’Shea et al., Ferrite materials for photoassisted environmental and solar fuels applications. Top. Curr. Chem. 378, 6 (2020). https://doi.org/10.1007/s41061-019-0270-3

    Article  Google Scholar 

  28. M.H. Lee, J.H. Park, H.S. Han, Nanostructured Ti doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. Int. J. Hyd. Ene. 39, 17501–17507 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.031

    Article  Google Scholar 

  29. M. Chirita, I. Grozescu, Fe2O3—nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull. 54, 1–8 (2009)

    Google Scholar 

  30. J.A. Glasscock, P.R.F. Barnes, I.C. Plumbs, Structural, optical and electrical properties of undoped polycrystaline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716–1724 (2008). https://doi.org/10.1016/j.tsf.2007.05.020

    Article  ADS  Google Scholar 

  31. L. Bertoluzzi, L. Badia-Bou, F. Fabregat-Santiago, Interpretation of cyclic voltammetry measurements of thin semicondutor films for solar fuel applications. J. Phys. Chem. Lett. 4, 1334–1339 (2013). https://doi.org/10.1021/jz400573t

    Article  Google Scholar 

  32. J.A. Glasscokc, P.R.F. Barnes, J.C. Plumb, Enhacement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477–16488 (2007). https://doi.org/10.1021/jp074556l

    Article  Google Scholar 

  33. M. Barroso, S.R. Pendlebury, A.J. Cowan, Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013). https://doi.org/10.1039/C3SC50496D

    Article  Google Scholar 

  34. P. Liao, M.C. Toroker, E.A. Carter, Electron transport in pure and doped hematite. Nano Lett. 11, 1775–1781 (2011). https://doi.org/10.1021/nl200356n

    Article  ADS  Google Scholar 

  35. D. Barreca, G. Carraro, A. Gasparotto et al., ACS Appl. Mater. Interfaces. 5, 7130–7138 (2013). https://doi.org/10.1021/am401475g

    Article  Google Scholar 

  36. D. Korte, G. Carraro, F. Fresno, M. Franko, Thermal properties of surface-modified α- and ε-Fe2O3 photocatalysts determined by beam deflection spectroscopy. Int. J. Thermophys. 35, 2107–2114 (2014). https://doi.org/10.1007/s10765-014-1739-5

    Article  ADS  Google Scholar 

  37. J. Tucek, R. Zboril, A. Namai, S.-I. Ohkoshi, ε-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 22, 6483–6505 (2010). https://doi.org/10.1021/cm101967h

    Article  Google Scholar 

  38. L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric Iron (III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011). https://doi.org/10.1021/cm200397g39

    Article  Google Scholar 

  39. A. Mandelis, P. Hess, Semiconductors and electronic materials, progress in photothermal and photoacoustic science and technology (SPIE PRESS, Washington, 2000)

    Google Scholar 

  40. F.A. McDonald, G.C. Wetsel, Generalized theory of photoacoustic effect. J. Appl. Phys. 49, 2313 (1978). https://doi.org/10.1063/1.325116

    Article  ADS  Google Scholar 

  41. D.M. Todorovic, P.M. Nikolic, A.I. Bojicic, Thermoelastic and electronic strain contributions to the frequency transmission photoacoustic effect in semiconductors. Phy. Rev. B 55, 15631–15642 (1997). https://doi.org/10.1103/PhysRevB.55.15631

    Article  ADS  Google Scholar 

  42. D.K. Markushev, D.D. Markushev, S.M. Aleksic, D.S. Pantic, S.P. Galovic, D.M. Todorovic, J. Ordonez-Miranda, Effects of the photogenerated excess carriers on the thermal and elastic properties of n-type silicon excited with a modulated light source: theoretical analysis. J. Appl. Phys. 126, 185102 (2019). https://doi.org/10.1063/1.5100837

    Article  ADS  Google Scholar 

  43. D.D. Markushev, M.D. Rabasovic, D.M. Todorovic, S. Galovic, S.E. Bialkowski, Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain. Rev. Sci. Inst. 86, 035110 (2015). https://doi.org/10.1063/1.4914894

    Article  ADS  Google Scholar 

  44. S.M. Aleksić, D.K. Markushev, D.S. Pantić, M.D. Rabasović, D.D. Markushev, D.M. Todorović, Electro-acoustic influence of measuring system on the photoacoustic signal amplitude and phase in frequency domain. Facta Universitatis Series: Phys. Chem. Technol 14, 9–20 (2016). https://doi.org/10.2298/fupct1601009a

    Article  Google Scholar 

  45. D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasović, S. Galović, D.M. Todorović, S.E. Bialkowski, Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments. J. App. Phys. 117, 245309 (2015). https://doi.org/10.1063/1.4922718

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the ON171016 Grant; ERASMUS + student and staff mobility grants, and, by the Slovenian Research Agency through research program P2-0393—Advanced materials for low carbon and sustainable society. The authors are grateful to M.D. Rabasovic and D. M. Todorovic for useful discussion about the theoretical model application and help during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aleksić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Temperature Distributions in the Two-Layer Sample

In the case of the two-layer sample consisting of a first layer (thin film) having the thickness l1 and second layer (substrate) having the thickness l2, a two-layer theoretical model is developed [8, 12] to study the dependence of photoacoustic response on optical, thermal, elastic and carrier transport properties. Layers are considered to be made of different materials: thin film as a transparent dielectric and substrate as a semitransparent semiconductor of p-type. Due to simplicity, the analyzed sample is assumed to be a thin circular plate having a cylindrical symmetry around the z-axis, with the thickness much lower than its radius. All of these simplifications allow one to reduce heat transfer within the sample to the 1D problem. Furthermore, the thickness of the thin film is taken to be much smaller than the substrate thickness: l2≫ l1. The principal scheme of such a two-layer system is depicted in Fig. 6.

Fig. 6
figure 6

The principal scheme of an investigated two-layer system

When the two-layer sample (Fig. 6) is exposed to the periodic optical excitation using the light source tuned to modulation frequencies f, the component of the periodic temperature distribution T1 (z,f) in the first layer can be obtained solving 1D diffusion equation [8, 12, 27]:

$$\frac{{\partial^{2} T_{1} \left( {z,f} \right)}}{{\partial z^{2} }} - \frac{i\omega }{{D_{T1} }}T_{1} \left( {z,f} \right) = - \frac{1}{{k_{1} }}\beta_{1} \left( {1 - R_{1} } \right)I_{0} e^{{ - \beta_{1} \left( {z + l_{1} } \right)}} ,$$
(A1)

where ω =2πf is the angular modulated frequency, I0 the incident light intensity, R1 the film reflection coefficient, DT1 the film thermal diffusion coefficient, k1 the film heat conduction coefficient, and β1 the film absorption coefficient. The general solution of Eq. 1 can be written in the form:

$$T_{1} \left( {z + l_{1} ,f} \right) = A_{1} e^{{\sigma_{1} \left( {z + l_{1} } \right)}} + A_{2} e^{{ - \sigma_{1} \left( {z + l_{1} } \right)}} + A_{3} e^{{ - \beta_{1} \left( {z + l_{1} } \right)}} ,$$
(A2)

where \(\sigma_{1} = \sqrt {i\omega /D_{T1} }\) is the film complex thermal diffusivity, and constant A3 is given as:

$$A_{3} = - \frac{{\beta_{1} I_{0} (1 - R_{1} )}}{{k_{1} \left( {\beta_{1}^{2} - \sigma_{1}^{2} } \right)}}$$

The component of the periodical temperature distribution T2 (z,f) in the second layer can be obtained solving the 1D diffusion equation given in the form [8, 12, 27,28,29,30]:

$$\frac{{\partial^{2} T_{2} \left( {z,f} \right)}}{{\partial z^{2} }} - \sigma_{2}^{2} T_{2} \left( {z,f} \right) = - \frac{{\varepsilon_{g} }}{{k_{2} \tau_{2} }}n_{e} \left( {z,f} \right) - \frac{{\beta_{2} I}}{{k_{2} }} \cdot \frac{{\varepsilon - \varepsilon_{g} }}{\varepsilon }e^{{ - \beta_{2} z}} ,$$
(A3)

where \(I = \left( {1 - R_{1} } \right)\left( {1 - R_{2} } \right)e^{{ - \beta_{1} l_{1} }} I_{0}\), \(n_{e} \left( {z,f} \right)\) is the minority carrier density along the z-axes, \(\varepsilon_{g}\) the substrate energy gap, \(\varepsilon\) the incident light photon energy, \(R_{2}\) the substrate reflection coefficient, \(\sigma_{2} = \sqrt {i\omega /D_{T2} }\) the substrate complex thermal diffusivity, DT2 the substrate thermal diffusion coefficient, k2 the substrate heat conduction coefficient and β2 the substrate absorption coefficient.

The general solution of Eq. A3 can be written in the form:

$$T_{2} \left( {z,f} \right) = B_{1} e^{{\sigma_{2} z}} + B_{2} e^{{ - \sigma_{2} z}} + B_{3} n_{e} \left( {z,f} \right) + B_{4} e^{{ - \beta_{2} z}} ,$$
(A4)

where

$$B_{3} = - \frac{{\varepsilon_{g} }}{{k_{2} \tau_{2} \left( {\sigma_{2}^{2} - \frac{1}{{L^{2} }}} \right)}},{\kern 1pt} \quad B_{4} = - \frac{{\beta_{2} \left( {1 - R_{1} } \right)\left( {1 - R_{2} } \right)e^{{ - \beta_{1} l_{1} }} I_{0} }}{{\varepsilon \left( {\beta_{2}^{2} - \sigma_{2}^{2} } \right)}}\left( {\frac{{B_{3} }}{{D_{e} }} - \frac{{\varepsilon - \varepsilon_{g} }}{{k_{2} }}} \right),$$

and \(L = \sqrt {\frac{{D_{e} \tau_{2} }}{{1 + i\omega \tau_{2} }}}\) is the complex minority carrier diffusion length (De is the diffusion coefficient of minority carriers).

Constants A1, A2, B1 and B2 can be found solving the boundary conditions:

  1. (a)

    \(- k_{1} \left. {\frac{{\partial T_{1} \left( {z,f} \right)}}{\partial z}} \right|_{{z = - l_{1} }} = 0 ,\)

  2. (b)

    \(T_{1} \left( {0,f} \right) = T_{2} \left( {0,f} \right) ,\)

  3. (c)

    \(- k_{2} \left. {\frac{{\partial T_{2} \left( {z,f} \right)}}{\partial z}} \right|_{z = 0} = s_{\text{F2}} n_{e} \left( {0,f} \right)\varepsilon_{g} - k_{1} \left. {\frac{{\partial T_{1} \left( {z,f} \right)}}{\partial z}} \right|_{z = 0}\)

  4. (d)
    $$- k_{2} \left. {\frac{{\partial T_{2} \left( {z,f} \right)}}{\partial z}} \right|_{{z = l_{2} }} = - s_{\text{R2}} n_{e} \left( {l,f} \right)\varepsilon_{g}$$
    (A5)

where \(s_{\text{F2}}\) and \(s_{\text{R2}}\) are the substrate surface recombination speeds at the front \(\left( {z = 0} \right)\) and rear \(\left( {x = l_{2} } \right)\) surfaces, respectively, and \(\tau_{2}\) is the bulk minority carrier lifetime.

Appendix 2: Theory of Thermoelastic Bending

Following all the assumptions about the circular plate sample presented in Fig. 6, it is possible to use the simple theory of the elastic thin plate to obtain the elastic bending, i.e., the sample surface displacements as the photoacoustic signal generators. In the beginning, we will consider the sample as a one-layer plate. Later, we will distinguish one- and two-layer case following the parameters’ notation from Fig. 6.

The simplified thermoelastic bending theory of a uniform-thickness circular plate being subject to the surface heating with modulated light source describes thermoelastic displacements perpendicular Ur(r,z) (r-axis) and parallel Uz(r,z) (z-axis) to the surface normal for a circular plate (Fig. 7). The plate is mass centered at the origin and has a thickness of l and a radius, Rs. The Uz(r,z) at the back surface, z = l, important in a transmission photoacoustic measurements, can be written in a general form as [8, 27,28,29,30]

Fig. 7
figure 7

Thermoelastic displacements perpendicular Ur(r,z) (r-axis) and parallel Uz(r,z) (z-axis) to the surface normal for a circular plate

$$U_{z} \left( {r,z} \right) = \frac{{C_{m} }}{2}\left( {R_{s}^{2} - r^{2} } \right), \, m = {\text{I, II}} .$$

where m = I refers to one-layer, and m = II to a two-layer plate.

Following the parameters’ notation for a thin film and substrate (Fig. 1), in the one-layer case (substrate only) the constant Cm= CI is equal to [6, 27,28,29,30]

$$C_{\text{I}} = \frac{{12\alpha_{T2} }}{{l_{2}^{2} }}M_{T2} ,$$

while in the two-layer case Cm= CII is equal to [8, 12]

$$C_{\text{II}} = \frac{{6E_{2}^{2} l_{2} \left( {2M_{T2} - l_{2} N_{T2} } \right)\alpha_{T2} + E_{1}^{2} l_{1} \left( {2M_{T1} - l_{1} N_{T1} } \right)\alpha_{T1} + E_{2} E_{1} \left[ {l_{1} \left( {2M_{T2} - l_{1} N_{T2} } \right)\alpha_{T2} + l_{2} \left( {2M_{T1} - l_{2} N_{T1} } \right)\alpha_{T1} } \right]}}{{E_{2}^{2} l_{2}^{4} + E_{1}^{2} l_{1}^{4} + 2E_{2} E_{1} l_{2} l_{1} \left( {2l_{2}^{2} + 3l_{2} l_{1} + 2l_{1}^{2} } \right)}},$$

where E2 and E1 are the Young’s modulus of the substrate and film, respectively, and MT2, MT1, NT2 and NT1 are defined as

$$M_{T2} = \int\limits_{0}^{{l_{2} }} {zT_{2} \left( {z,f} \right){\text{d}}z} ,\quad M_{T1} = \int\limits_{{ - l_{1} }}^{0} {zT_{f} \left( {z,f} \right){\text{d}}z} ,$$
$$N_{T2} = \int\limits_{0}^{{l_{2} }} {T_{2} \left( {z,f} \right){\text{d}}z} ,\quad N_{T1} = \int\limits_{{ - l_{1} }}^{0} {T_{f} \left( {z,f} \right){\text{d}}z} .$$

The back-side displacement Uz(r,z) exhibits parabolic thermoelastic displacement representing bending. Such thermoelastic bending produces a back-side acoustic wave with a pressure

$$\delta p_{\text{TE}} \left( f \right) = \frac{{\gamma p_{0} }}{{V_{0} }}\int\limits_{0}^{{R_{s} }} {2\pi rU_{z} \left( {r,z} \right)} {\text{d}}r,$$

usually detected with a microphone as a photoacoustic thermoelastic signal component, δpTE(f) (see Eq. 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovančić, N., Markushev, D.K., Markushev, D.D. et al. Thermal and Elastic Characterization of Nanostructured Fe2O3 Polymorphs and TiO2-Coated Fe2O3 Using Open Photoacoustic Cell. Int J Thermophys 41, 90 (2020). https://doi.org/10.1007/s10765-020-02669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02669-w

Keywords

Navigation