Skip to main content
Log in

Dispersion characteristics of terahertz transverse electric mode in a smooth-wall cylindrical waveguide with a degenerate plasma layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The propagation of transverse electric mode in a cylindrical metallic smooth-wall waveguide contains a dielectric rod and a cold collisionless unmagnetized degenerate plasma layer is analytically investigated in the terahertz frequency region. The dispersion relations of fast and slow waves for this mode are derived and solved numerically. The effects of geometrical and physical parameters such as dielectric, plasma and metal radii, and dielectric permittivity on the dispersion characteristics of terahertz transverse electric mode and its frequency spectrum are studied. It is shown that the decrease of dielectric permittivity and metal radius, and the increase of degenerate plasma radius leads to higher frequency fast waves. It is also indicated that an increase in the dielectric radius results in a decrease in the frequency of fast waves. In addition, it is found that by reducing the dielectric rod radius and with increasing metal radius, the frequency is increased in the slow waves. Finally, it is shown that the increase in dielectric permittivity causes a decrease in the frequency of both fast and slow waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdoli-Arani, A., Jazi, B., Shokri, B.: Acceleration of an electron inside the circular and elliptical waveguides by microwave radiation. IEEE Trans. Plasma Sci. 41, 62–69 (2013)

    Article  ADS  Google Scholar 

  • Alexandrov, A.F., Bogdankovich, L.S., Rukhadze, A.A.: Principles of Plasma Electrodynamics. Springer, Heidelberg (1984)

    Book  Google Scholar 

  • Bagnll, D.M., Chen, Y.F., Zhu, Z., Yao, T., Shen, M.Y., Goto, T.: High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 73, 1038–1040 (1998)

    Article  ADS  Google Scholar 

  • Bethke, S., Pan, H., Wessels, B.W.: Luminescence of heteroepitaxial zinc oxide. Appl. Phys. Lett. 52, 138–140 (1988)

    Article  ADS  Google Scholar 

  • Bogdankevich, I.L., Grishin, D.M., Gunin, A.V., Ivanov, I.E., Korovin, S.D., Loza, O.T., et al.: Repetitively rated plasma relativistic microwave oscillator with a controllable frequency in every pulse. Plasma Phys. Rep. 34, 855–859 (2008)

    Article  ADS  Google Scholar 

  • Bssho, M., Ito, R., Bae, J.: Periodic terahertz-wave generation using a photoconductive antenna array in a rectangular metal waveguide. In: 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2. IEEE (2018)

  • Chaudhary, A.K., Bahadoran, M., Ali, J., Baboli, M., Nejati, M., Yupapin, P.: The thickness effect of the degenerate plasma layer on the dispersion relation of cylindrical smooth-wall waveguide. Int. J. Innov. Comput. 5, 9–12 (2015)

    Google Scholar 

  • Chen, Y., Ko, H.J., Hong, S.K., Yao, T.: Simulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular beam epitaxy with buffer. Appl. Phys. Lett. 79, 1469–1471 (2001)

    Article  ADS  Google Scholar 

  • Chew, W.C.: Lectures on the Theory of Microwave and Optical Waveguides. University of Illinois Lecture (2012)

  • Collin, R.E.: Foundations for Microwave Engineering. Wiley, Hoboken (2007)

    Google Scholar 

  • Cook, D.J., Hochstrasser, R.M.: Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25, 1210–1212 (2000)

    Article  ADS  Google Scholar 

  • Cook, A.M., Tikhoplav, R., Tochitsky, S.Y., Travish, G., Williams, O.B., Rosenzweig, J.B.: Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide. Phys. Rev. Lett. 103, 095003 (2009)

    Article  ADS  Google Scholar 

  • Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101 (2010)

    Article  ADS  Google Scholar 

  • Fons, P., Iwata, K., Niki, S., Yamada, A., Matsubara, K.: Growth of high-quality epitaxial ZnO films on α-Al2O3. J. Cryst. Growth 201, 627–632 (1999)

    Article  ADS  Google Scholar 

  • Frolov, A.A.: Dipole mechanism generation of terahertz waves under laser–cluster interaction. Plasma Phys. Rep. 44, 40–54 (2018)

    Article  ADS  Google Scholar 

  • Hamster, H., Sullivan, A., Gordon, S., White, W., Falcone, R.W.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725–2728 (1993)

    Article  ADS  Google Scholar 

  • Hine, G.A., Goers, A.J., Feder, L., Elle, J.A., Yoon, S.J., Milchberg, H.M.: Generation of axially modulated plasma waveguides using a spatial light modulator. Opt. Lett. 41, 3427–3430 (2016)

    Article  ADS  Google Scholar 

  • Islam, M., Kumar, G.: Terahertz surface plasmons propagation through periodically tilted pillars and control on directional properties. J. Phys. D Appl. Phys. 49, 435104 (2016)

    Article  ADS  Google Scholar 

  • Jazi, B., Shokri, B., Arbab, H.: Azimuthal electromagnetic surface waves in a rod dielectric magnetized plasma waveguide and their excitation by an annular relativistic rotating electron beam. Plasma Phys. Controlled Fusion 48, 1105–1123 (2006a)

    Article  ADS  Google Scholar 

  • Jazi, B., Nejati, M., Salehi, A.: The theoretical investigation of THz electromagnetic waves in a rod degenerate plasma waveguide. Int. J. Infrared Millimeter Waves 27, 1469–1495 (2006b)

    Article  ADS  Google Scholar 

  • Jazi, B., Nejati, M., Shokri, B.: Excitation of THz symmetric TM-modes in a cylindrical metallic waveguide with an axial magnetized degenerate plasma rod by an electron beam. Phys. Lett. A 370, 319–330 (2007a)

    Article  ADS  Google Scholar 

  • Jazi, B., Salehi, A., Shokri, B., Nejati, M., Saatchi, S.E.: The effects of thermal velocities on frequency spectra of an unbounded collisionless degenerate plasma with two different types of equilibrium distribution functions. Phys. Scr. 77, 015504 (2007b)

    Article  Google Scholar 

  • Kumar, S., Yoon, M.: Electron dynamics and acceleration study in a magnetized plasma-filled cylindrical waveguide. J. Appl. Phys. 103, 023302 (2008)

    Article  ADS  Google Scholar 

  • Layer, B.D., York, A., Antonsen, T.M., Varma, S., Chen, Y.-H., Leng, Y., Milchberg, H.M.: Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001 (2007)

    Article  ADS  Google Scholar 

  • Lewis, R.A.: A review of terahertz sources. J. Phys. D Appl. Phys. 47, 374001 (2014)

    Article  Google Scholar 

  • Liu, J.: Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Opt. Quant. Electron. 49, 1–8 (2017)

    Article  Google Scholar 

  • Miao, C., Palastro, J.P., Antonsen, T.M.: Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas. Phys. Plasmas 23, 063103 (2016)

    Article  Google Scholar 

  • Miao, C., Palastro, J.P., Antonsen, T.M.: High-power tunable laser driven THz generation in corrugated plasma waveguides. Phys. Plasmas 24, 043109 (2017)

    Article  ADS  Google Scholar 

  • Mittleman, D. (ed.): Sensing with Terahertz Radiation, vol. 85. Springer, Berlin (2013)

    Google Scholar 

  • Muthukumar, S., Zhong, J., Chen, Y., Lu, Y., Siegrist, T.: Growth and structural analysis of metalorganic chemical vapor deposited (1120) Mgx Zn1−x O (0 < x < 0.33) films (0112) on R-plane Al2O3 substrates. Appl. Phys. Lett. 82, 742–744 (2003)

    Article  ADS  Google Scholar 

  • Nejati, M., Shokri, B.: The rod degenerate plasma-rippled-wall waveguide and its excitation by relativistic electron beam injection. IEEE Trans. Plasma Sci. 40, 3029–3036 (2012)

    Article  ADS  Google Scholar 

  • Niknam, A.R., Banjafar, M.R., Jahangiri, F., Barzegar, S., Massudi, R.: Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams. Phys. Plasmas 23, 053110 (2016)

    Article  ADS  Google Scholar 

  • Nusantara, H., Setiawan, A., Chairunnisa, A.M.: Investigation of dielectric-lined for transmission loss reduction of optical waveguide. Procedia Technol. 11, 1117–1121 (2013)

    Article  Google Scholar 

  • Ogusu, K.: TE waves in a symmetric dielectric slab waveguide with a Kerr-like nonlinear permittivity. Opt. Quant. Electron. 19, 65–72 (1987)

    Article  Google Scholar 

  • Pozar, D.M.: Microwave Engineering. Wiley (2009)

  • Safari, S., Niknam, A.R., Jahangiri, F., Jazi, B.: Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: field profile optimization. J. Appl. Phys. 123, 153101 (2018)

    Article  ADS  Google Scholar 

  • Shokri, B., Jazi, B.: Spatial growth rate and field profiles of symmetric mode in a rod dielectric Čerenkov maser with a magnetized plasma column. Phys. Lett. A 336, 477–489 (2005)

    Article  ADS  Google Scholar 

  • Steiner, K.H.: A theory of the dielectric multi-layer-core waveguide. Opt. Quant. Electron. 7, 59–71 (1975)

    Article  ADS  Google Scholar 

  • Tao, H., Kadlec, E.A., Strikwerda, A.C., Fan, K., Padilla, W.J., Averitt, R.D., Shaner, E.A., Zhang, X.: Microwave and terahertz wave sensing with metamaterials. Opt. Express 19, 21620–21626 (2011)

    Article  ADS  Google Scholar 

  • Tashakori, H., Niknam, A.R., Nejati, M., Jazi, B.: Generation and amplification of terahertz electromagnetic waves in a plasma waveguide with a dielectric rod and an annular degenerate plasma. Waves Random Complex Media 20, 472–490 (2010)

    Article  ADS  Google Scholar 

  • Wang, H., Yang, Z., Liang, Z.: Linear theory of the beam–wave interaction in the arbitrary cylindrical Cerenkov device. Int. J. Infrared Millimeter Wave 26, 375–386 (2005)

    Article  ADS  Google Scholar 

  • Yu, S.F., Yuen, C., Lau, S.P., Fan, W.J.: Design and fabrication of zinc oxide thin-film ridge waveguides on silicon substrate with ultraviolet amplified spontaneous emission. IEEE J. Quantum Electron. 40, 406–412 (2004)

    Article  ADS  Google Scholar 

  • Zhang, X.C.: Terahertz wave imaging: horizons and hurdles. Phys. Med. Biol. 47, 3667–3677 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nejati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadiamiri, F., Nejati, M., Chaudhary, K. et al. Dispersion characteristics of terahertz transverse electric mode in a smooth-wall cylindrical waveguide with a degenerate plasma layer. Opt Quant Electron 52, 254 (2020). https://doi.org/10.1007/s11082-020-02364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02364-y

Keywords

Navigation