Skip to main content
Log in

Asymptotic analysis of an anti-plane shear dispersion of an elastic five-layered structure amidst contrasting properties

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper studies the anti-plane shear motion of an inhomogeneous elastic five-layered plate amidst the four contrasting material setups. The asymptotic analysis method in regard to the various material parameters is adopted for the study. The respective displacements, stresses and the Rayleigh-Lamb dispersion relation corresponding to the antisymmetric anti-plane motion with perfect interlayer and traction-free (on the outer faces) boundary conditions are determined. Furthermore, in order to analyze the said dispersion relation in the presence of these contrasts, a unification of parameters was proposed. The overall cutoff frequencies and the low-frequency estimates are determined for both the generalized and unified settings. A comparative analysis between the unified Rayleigh-Lamb dispersion relation and the optimal shortened polynomial dispersion relation is carried for each contrast. We also established some asymptotic formulae for the related unified displacements and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic solids. Eight impression. Elsevier, The Netherland (1999)

    Google Scholar 

  2. Kaplunov, J.D., Kossovich, L.Y., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  3. Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Ivankov, O.A.: Asymtotic Methods in the Theory of Plates with Mixed Boundary Conditions. Wiley, London (2014)

    MATH  Google Scholar 

  4. Gridin, D., Craster, R.V., Adamou, A.T.: Trapped modes in curved elastic plates. Proc. R. Soc. London, Ser A 461(2056), 1181–1197 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Lee, P., Chang, N.: Harmonic waves in elastic sandwich plates. J. Elast. 9(1), 51–69 (1979)

    MATH  Google Scholar 

  6. Talebitooti, R., Johari, V., Zarastvand, M.: Wave transmission across laminated composite plate in the subsonic flow investigating two-variable refined plate theory. Lat. Am. J. Solids Struct. 15, 5 (2018)

    Google Scholar 

  7. Talebitooti, R., Zarastvand, M., Gheibi, M.R.: Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow. Compos. Struct. 157(1), 95–110 (2016)

    Google Scholar 

  8. Talebitooti, R., Khameneh, A.M.C., Zarastvand, M.R., Kornokar, M.: Investigation of three-dimensional theory on sound transmission through compressed poroelastic sandwich cylindrical shell in various boundary configurations. J. Sandwich Struct Mater. 1, 10 (2018)

    Google Scholar 

  9. Talebitooti, R., Gohari, H.D., Zarastvand, M.R.: Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated sorting genetic algorithm. Aerospace Sci. Technol. 67, 269–280 (2017)

    Google Scholar 

  10. Talebitooti, R., Zarastvand, M.R., Gohari, H.D.: Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory. J. Vib. Control 5 (2017)

  11. Talebitooti, R., Zarastvand, M.R.: The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell. Aerospace Sci. Technol. 78, 157–170 (2018)

    Google Scholar 

  12. Talebitooti, R., Zarastvand, M.R., Rouhani, A.H.S.: Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate. Lat. Am. J. Solids Struct. 16, 1 (2019)

    Google Scholar 

  13. Talebitooti, R., Zarastvand, M.R., Darvishgohari, H.: Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure. J. Sandwich Struct. Mater. 12, 10 (2019)

    Google Scholar 

  14. Ghassabi, M., Zarastvand, M.R., Talebitooti, R.: Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures. Eng. Comput. 59, 149 (2019)

    MATH  Google Scholar 

  15. Gohari, H.D., Zarastvand, M.R., Talebitooti, R.: Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media. J. Vib. Control 7 (2020)

  16. Sahin, O., Erbas, B., Kaplunov, J., Savsek, T.: The lowest vibration modes of an elastic beam composed of alternating stiff and soft components. Appl. Mech, Arch (2019). https://doi.org/10.1007/s00419-019-01612-2

    Book  Google Scholar 

  17. Kaplunov, J., Prikazchikov, D.A., Prikazchikov, L.A., Sergushova, O.: The lowest vibration spectra of multi-component structures with contrast material properties. J. Sound Vib. 445, 132–147 (2019)

    Google Scholar 

  18. Erbas, B., Kaplunov, J., Nolde, E., Palsu, M.: Composite wave models for elastic plates. Proc. R. Soc. A Math. Phy. Eng. Sci. 474, 2214 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Kaplunov, J., Prikazchikov, D.A., Sergushova, O.: Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. J. Sound Vib. 366, 264–276 (2016)

    Google Scholar 

  20. Søensen, R., Lund, E.: Thickness filters for discrete material and thickness optimization of laminated composite structures. Struc. Multidisc. Opt. (2015)

  21. Talebitooti, R., Zarastvand, M.R., Gohari, H.D.: The influence of boundaries on sound insulation of the multilayered aerospace poroelastic composite structure. Aerospace Sci. Technol. 80, 452–471 (2018)

    Google Scholar 

  22. Talebitooti, R., Zarastvand, M.: Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the third order Shear deformation theory. Aerospace Sci. Technol. 75, 227–236 (2018)

    Google Scholar 

  23. Ghassabi, M., Talebitooti, R., Zarastvand, M.R.: State vector computational technique for three-dimensional acoustic sound propagation through doubly curved thick structure. Comp. Methods Appl. Mech. Eng. 352(1), 324–344 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Zarastvand, M.R., Ghassabi, M., Talebitooti, R.: Acoustic insulation characteristics of shell structures: a review. Arch. Comput. Methods Eng. 10, 129 (2019)

    MATH  Google Scholar 

  25. Sayyad, A.S., Ghugal, Y.M.: Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Compos. Struct. 171, 486–504 (2017)

    Google Scholar 

  26. Belarbi, M.O., Tati, A., Ounis, H., Khechai, A.: On the free vibration analysis of laminated composite and sandwich plates: a layerwise finite element formulation. Lat. Am. J. Solids Struct. 10, 456 (2017)

    Google Scholar 

  27. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283–291 (2014)

    Google Scholar 

  28. Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM 95(10), 1004–1011 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Kaplunov, J., Prikazchikov, D., Prikazchikova, L.: Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. Int. J. Solids Struct. 113, 169–179 (2017)

    Google Scholar 

  30. Prikazchikov, L.A., Aydın, Y.E., Erbas, B., Kaplunov, J.: Asymptotic analysis of anti-plane dynamic problem for a three-layered strongly inhomogeneous laminate. Math. Mech. Solids 56, 189 (2018)

    Google Scholar 

  31. Erbas, B.: Low frequency antiplane shear vibrations of a three-layered elastic plate. Eskişehir Techn. Uni. J. Sci. Techno. A: Appl. Sci. Eng. 19(4), 867–879 (2018)

    Google Scholar 

  32. Wang, X., Shi, G.: A simple and accurate sandwich plate theory accounting for transverse normal strain and interfacial stress continuity. Compos. Struct. 107, 620–628 (2014)

    Google Scholar 

  33. Ryazantseva, M.Y., Antonov, F.K.: Harmonic running waves in sandwich plates. Int. J. Eng. Sci. 59, 184–192 (2012)

    Google Scholar 

  34. Rogerson, G.A., Prikazchikova, L.A.: Generalisations of long wave theories for pre-stressed compressible elastic plates. Int. J. NonLinear Mech. 44(5), 520–529 (2009)

    Google Scholar 

  35. Zhai, Y., Li, Y., Liang, S.: Free vibration analysis of five-layered composite sandwich plates with two-layered viscoelastic cores. Solids Struct. 200(15), 346–357 (2018)

    Google Scholar 

  36. Lopez-Aenlle, M., Pelayo, F.: Static and dynamic effective thickness in five-layered glass plates. Solids Struct. 212(15), 259–270 (2019)

    Google Scholar 

  37. Conlan, N., Casey, J.: Comparing predicted and on site performance of CLT partitions and flanking elements. Proc. Inst. Acoust. 37, 2 (2015)

    Google Scholar 

  38. Shishehsaz, M., Raissi, H., Moradi, S.: Stress distribution in a five-layer circular sandwich composite plate based on the third and hyperbolic shear deformation theories. Mech. Adv. Mater. Struct. 86, 469 (2019)

    Google Scholar 

  39. Khalil, H.K.C., Hadi, N.H.: Non-destructive damage assessment of five layers fiber glass/polyester composite materials laminated plate by using lamb waves simulation. J. Eng. 5, 25 (2019)

    Google Scholar 

  40. Baltazar, M.F, M. Almas: Lamination parameter optimization of flat fibre reinforced plates for vibration frequency criteria. Semantic Scholar, ID 125335818 (2013)

  41. Assadi, A., Najaf, H.: Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy. Arch. Appl. Mech. 90, 847–868 (2020)

    Google Scholar 

  42. Demirkus, D.: Antisymmetric bright solitary SH waves in a nonlinear heterogeneous plate. Z. Angew. Math. Phys. 69(128) (2018)

  43. Demirkus, D.: Non-linear bright solitary SH waves in a hyperbolically heterogeneous layer. Int. J. Non-Linear Mech. 102, 53–61 (2018)

    MATH  Google Scholar 

  44. Nawaz, R., Ayub, M.: Closed form solution of electromagnetic wave diffraction problem in a homogeneous bi-isotropic medium. Math. Methods Appl. Sci. 20, 189 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Lotfy, K., El-Bary, A.A.: Wave propagation of generalized magneto-thermoelastic interactions in an elastic medium under influence of initial stress. Iranian J. Sci. Technol. Trans. Mech. Eng. 56, 869 (2019)

    Google Scholar 

  46. Kaplunov, J., Nobili, A.: Multi-parametric analysis of strongly inhomogeneous periodic waveguides with internal cut-off frequencies. Math. Methods Appl. Sci. 40(9), 3381–3392 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Craster, R., Joseph, L., Kaplunov, J.: Long-wave asymptotic theories: the connection between functionally graded waveguides and periodic media. Wave Motion 51(4), 581–588 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Maghsoodi, A., Ohadi, A., Sadighi, M.: Calculation of Wave Dispersion Curves in Multilayered Composite-Metal Plates. Shock Vib. ID 410514 (2014)

Download references

Acknowledgements

The first author, Rahmatullah Ibrahim Nuruddeen, sincerely acknowledges the 2017 CIIT-TWAS Full-time Postgraduate Fellowship Award (FR Number: 3240299480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. M. Zaigham Zia.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The dispersion matrix posed by the problem in Sect. 4 is as follows:

$$\begin{aligned} \left( \begin{array}{ccccc} \sinh \left( p_1\right) &{} -\cosh \left( p_2\right) &{} -\sinh \left( p_2\right) &{} 0 &{} 0 \\ 0 &{} \cosh \left( p_3\right) &{} \sinh \left( p_3\right) &{} -\cosh \left( p_4\right) &{} -\sinh \left( p_4\right) \\ \cosh \left( p_1\right) R_{\text {ic}} \mu _{\text {ic}} &{} -\sinh \left( p_2\right) R_{\text {oc}} \mu _{\text {oc}} &{} -\cosh \left( p_2\right) R_{\text {oc}} \mu _{\text {oc}} &{} 0 &{} 0 \\ 0 &{} \sinh \left( p_3\right) R_{\text {oc}} \mu _{\text {oc}} &{} \cosh \left( p_3\right) R_{\text {oc}} \mu _{\text {oc}} &{} -\sinh \left( p_4\right) R_s \mu _s &{} -\cosh \left( p_4\right) R_s \mu _s \\ 0 &{} 0 &{} 0 &{} \sinh \left( p_5\right) &{} \cosh \left( p_5\right) \\ \end{array} \right) , \end{aligned}$$

with the following shortend terms in the matrix above

$$\begin{aligned} p_1=h_1 R_{\text {ic}}, \ \ p_2=h_1 R_{\text {oc}}, \ \ p_3=\left( h_1+h_2\right) R_{\text {oc}}, \ \ p_4=\left( h_1+h_2\right) R_s, \ \ p_5=\left( h_1+h_2+h_3\right) R_s, \end{aligned}$$

where

$$\begin{aligned} R_s=\sqrt{k^2-\frac{\omega ^2}{c_s^2}}, \ \ \ \ R_{\text {ic}}=\sqrt{k^2-\frac{\omega ^2}{c_{\text {ic}}^2}}, \ \ \ \ R_{\text {oc}}=\sqrt{k^2-\frac{\omega ^2}{c_{\text {oc}}^2}}. \end{aligned}$$

Note that the dimensionless form of the above formulae is used in the main text via Eqs. (9)–(11).

Appendix B

Some of the polynomial coefficients of Eq. (15) of Sect. 4 are as follows:

$$\begin{aligned} \gamma _1= & {} \frac{1}{2} \left( h^*\right) ^2 \mu _* \mu ^*+h h^* \mu \mu _*+h h_* \mu \mu ^*+h \mu \mu _* \mu ^*+\frac{\mu _* \mu ^*}{2}, \nonumber \\ \gamma _2= & {} \frac{1}{6} h^3 \mu \mu _* \mu ^*+\frac{1}{6} h_* \left( h^*\right) ^2 h \mu \mu ^*+\frac{1}{2} \left( h^*\right) ^2 h \mu \mu _* \mu ^*+\frac{1}{4} \left( h^*\right) ^2 \mu _* \mu ^* +\frac{1}{6} \left( h^*\right) ^3 h \mu \mu _* \nonumber \\&+ \frac{1}{2} h^* h \mu \mu _* + \frac{1}{6} h^* h^3 \mu \mu _* + \frac{1}{6} h_* h \mu \mu ^* +\frac{1}{6} h \mu \mu _* \mu ^*, \nonumber \\ \gamma _3= & {} -\frac{1}{6} h^3 \mu \mu _* \mu ^*-\frac{h_* h^3 \mu ^2 \mu ^*}{2 \rho }-\frac{h^3 \mu ^2 \mu _* \mu ^*}{6 \rho }-\frac{h^2 \mu \mu _* \mu ^*}{4 \rho }-\frac{\left( h^*\right) ^2 h \mu \mu _* \left( \mu ^*\right) ^2}{2 \rho ^*} \nonumber \\&-\frac{h^* h \mu \mu _* \mu ^*}{2 \rho ^*}-\frac{\left( h^*\right) ^3 h \mu \mu _* \mu ^*}{3 \rho ^*} -\frac{h_* \left( h^*\right) ^2 h \mu \left( \mu ^*\right) ^2}{6 \rho ^*}-\frac{\left( h^*\right) ^2 \mu _* \left( \mu ^*\right) ^2}{4 \rho ^*} \nonumber \\&-\frac{1}{6} h_* \left( h^*\right) ^2 h \mu \mu ^*-\frac{1}{2} \left( h^*\right) ^2 h \mu \mu _* \mu ^*-\frac{1}{4} \left( h^*\right) ^2 \mu _* \mu ^*-\frac{1}{2} h^* h \mu \mu _*, \nonumber \\ \gamma _4= & {} -\frac{h^2 \mu \mu _* \mu ^*}{2 \rho }-\frac{h^* h \mu \mu _* \mu ^*}{\rho ^*}-\frac{\left( h^*\right) ^2 \mu _* \left( \mu ^*\right) ^2}{2 \rho ^*}-h \mu \mu _* \mu ^*-h h_* \mu \mu ^*-\frac{\mu _* \mu ^*}{2},\nonumber \\ \gamma _5= & {} \frac{h_* h^3 \mu ^2 \mu ^*}{2 \rho }+\frac{h^3 \mu ^2 \mu _* \mu ^*}{6 \rho }+\frac{h^2 \mu \mu _* \mu ^*}{4 \rho }+\frac{\left( h^*\right) ^2 h \mu \mu _* \left( \mu ^*\right) ^2}{2 \rho ^*}+\frac{h^* h \mu \mu _* \mu ^*}{2 \rho ^*} \nonumber \\&+\frac{h_* \left( h^*\right) ^2 h \mu \left( \mu ^*\right) ^2}{6 \rho ^*} + \frac{\left( h^*\right) ^3 h \mu \mu _* \left( \mu ^*\right) ^2}{6 \left( \rho ^*\right) ^2}+\frac{\left( h^*\right) ^2 \mu _* \left( \mu ^*\right) ^2}{4 \rho ^*} \nonumber \\&+\frac{h^* h^3 \mu ^2 \mu _* \mu ^*}{6 \rho \rho ^*}+\frac{\left( h^*\right) ^2 h^2 \mu \mu _* \left( \mu ^*\right) ^2}{4 \rho \rho ^*}+\frac{1}{6} h_* h \mu \mu ^*+\frac{1}{6} h \mu \mu _* \mu ^*, \nonumber \\ \gamma _6= & {} \frac{1}{36} h^3 \mu \mu _* \mu ^*+\frac{h_* h^3 \mu ^2 \mu ^*}{6 \rho }+\frac{h^3 \mu ^2 \mu _* \mu ^*}{18 \rho }+\frac{\left( h^*\right) ^3 h \mu \mu _* \mu ^*}{6 \rho ^*}+\frac{h_* \left( h^*\right) ^2 h \mu \left( \mu ^*\right) ^2}{18 \rho ^*} \nonumber \\&+\frac{\left( h^*\right) ^3 h \mu \mu _* \left( \mu ^*\right) ^2}{12 \left( \rho ^*\right) ^2} +\frac{1}{36} h_* \left( h^*\right) ^2 h \mu \mu ^*+\frac{1}{12} \left( h^*\right) ^2 h \mu \mu _* \mu ^* +\frac{h^* h^3 \mu ^2 \mu _*}{12 \rho } \nonumber \\&+\frac{h^* h^3 \mu \mu _* \mu ^*}{12 \rho ^*}+\frac{\left( h^*\right) ^3 h^3 \mu \mu _* \left( \mu ^*\right) ^2}{36 \left( \rho ^*\right) ^2}+\frac{h_* \left( h^*\right) ^2 h^3 \mu ^2 \left( \mu ^*\right) ^2}{12 \rho \rho ^*} +\frac{h^* h^3 \mu ^2 \mu _* \mu ^*}{12 \rho \rho ^*} \nonumber \\&+\frac{\left( h^*\right) ^3 h^3 \mu ^2 \mu _* \mu ^*}{18 \rho \rho ^*}+\frac{h_* \left( h^*\right) ^2 h^3 \mu ^2 \mu ^*}{12 \rho }+\frac{\left( h^*\right) ^2 h^3 \mu ^2 \mu _* \mu ^*}{12 \rho }+\frac{\left( h^*\right) ^2 h^2 \mu \mu _* \mu ^*}{8 \rho }, \nonumber \\ \gamma _7= & {} -\frac{1}{18} h^3 \mu \mu _* \mu ^*-\frac{h_* h^3 \mu ^2 \mu ^*}{12 \rho }-\frac{h^3 \mu ^2 \mu _* \mu ^*}{36 \rho }-\frac{\left( h^*\right) ^3 h \mu \mu _* \mu ^*}{6 \rho ^*}-\frac{\left( h^*\right) ^2 h \mu \mu _* \left( \mu ^*\right) ^2}{12 \rho ^*} \nonumber \\&-\frac{h_* \left( h^*\right) ^2 h \mu \left( \mu ^*\right) ^2}{36 \rho ^*} -\frac{1}{18} h_* \left( h^*\right) ^2 h \mu \mu ^*-\frac{1}{6} \left( h^*\right) ^2 h \mu \mu _* \mu ^*-\frac{1}{12} \left( h^*\right) ^3 h \mu \mu _* \nonumber \\&-\frac{h^* h^3 \mu ^2 \mu _*}{12 \rho } -\frac{\left( h^*\right) ^3 h^3 \mu ^2 \mu _*}{36 \rho }-\frac{\left( h^*\right) ^2 h^3 \mu \mu _* \left( \mu ^*\right) ^2}{12 \rho ^*} -\frac{h^* h^3 \mu \mu _* \mu ^*}{12 \rho ^*} \nonumber \\&-\frac{\left( h^*\right) ^3 h^3 \mu \mu _* \mu ^*}{18 \rho ^*}-\frac{1}{12} \left( h^*\right) ^2 h^3 \mu \mu _* \mu ^* -\frac{h_* \left( h^*\right) ^2 h^3 \mu ^2 \mu ^*}{12 \rho }-\frac{\left( h^*\right) ^2 h^3 \mu ^2 \mu _* \mu ^*}{12 \rho }, \nonumber \\&\vdots \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuruddeen, R.I., Nawaz, R. & Zia, Q.M.Z. Asymptotic analysis of an anti-plane shear dispersion of an elastic five-layered structure amidst contrasting properties. Arch Appl Mech 90, 1875–1892 (2020). https://doi.org/10.1007/s00419-020-01702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01702-6

Keywords

Navigation