Skip to main content
Log in

Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a memberof the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qi J, Li L, Du Y, Wang S, Wang J, Luo Y, Che J, Lu J, Liu H, Hu G, Li J, Gong Y, Wang G, Hu M, Shiganyan LY (2014) The identification, typing, and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from mink with hemorrhagic pneumonia. Vet Microbiol 170(3–4):456–461. https://doi.org/10.1016/j.vetmic.2014.02.025

    Article  PubMed  CAS  Google Scholar 

  2. Traugott KA, Echevarria K, Maxwell P, Green K, Lewis JS 2nd (2011) Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 31(6):598–608. https://doi.org/10.1592/phco.31.6.598

    Article  PubMed  CAS  Google Scholar 

  3. Shimizu T, Homma JY, Aoyama T, Onodera T, Noda H (1974) Virulence of Pseudomonas aeruginosa and spontaneous spread of pseudomonas pneumonia in a mink ranch. Infect Immun 10(1):16–20

    Article  CAS  Google Scholar 

  4. Han MM, Mu LZ, Liu XP, Zhao J, Liu XF, Liu H (2014) ERIC-PCR genotyping of Pseudomonas aeruginosa isolates from haemorrhagic pneumonia cases in mink. Vet Rec Open 1(1):e000043. https://doi.org/10.1136/vropen-2014-000043

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pedersen K, Hammer AS, Sorensen CM, Heuer OE (2009) Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink. Vet Microbiol 133(1–2):115–122. https://doi.org/10.1016/j.vetmic.2008.06.005

    Article  PubMed  CAS  Google Scholar 

  6. McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S, Krause L, Bibiloni R, Schmitt B, Reuteler G, Brussow H (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443(2):187–196. https://doi.org/10.1016/j.virol.2013.05.022

    Article  PubMed  CAS  Google Scholar 

  7. Hammer AS, Pedersen K, Andersen TH, Jorgensen JC, Dietz HH (2003) Comparison of Pseudomonas aeruginosa isolates from mink by serotyping and pulsed-field gel electrophoresis. Vet Microbiol 94(3):237–243

    Article  CAS  Google Scholar 

  8. Yu X, Xu Y, Gu Y, Zhu Y, Liu X (2017) Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 7(1):13068. https://doi.org/10.1038/s41598-017-13363-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vahdani M, Azimi L, Asghari B, Bazmi F, Rastegar Lari A (2012) Phenotypic screening of extended-spectrum ss-lactamase and metallo-ss-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Ann Burns Fire Disasters 25(2):78–81

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P (1999) In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 43(2):287–291

    Article  CAS  Google Scholar 

  11. Ballok AE, O'Toole GA (2013) Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 195(18):4013–4019. https://doi.org/10.1128/JB.00339-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa Biofilms in Disease. Microb Ecol 68(1):1–12

    Article  CAS  Google Scholar 

  13. Pires DP, Vilas Boas D, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89(15):7449–7456. https://doi.org/10.1128/JVI.00385-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS ONE 10(1):e0116571. https://doi.org/10.1371/journal.pone.0116571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gong Z, Wang M, Yang Q, Li Z, Xia J, Gao Y, Jiang Y, Meng X, Liu Z, Yang D, Zhang F, Shao H, Wang D (2017) Isolation and complete genome sequence of a novel Pseudoalteromonas phage PH357 from the Yangtze River Estuary. Curr Microbiol 74(7):832–839. https://doi.org/10.1007/s00284-017-1244-8

    Article  PubMed  CAS  Google Scholar 

  16. Karumidze N, Thomas JA, Kvatadze N, Goderdzishvili M, Hakala KW, Weintraub ST, Alavidze Z, Hardies SC (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94(6):1609–1617. https://doi.org/10.1007/s00253-012-4119-8

    Article  PubMed  CAS  Google Scholar 

  17. Petsong K, Benjakul S, Chaturongakul S, Switt AIM, Vongkamjan K (2019) Lysis profiles of salmonella phages on salmonella isolates from various sources and efficiency of a phage cocktail against S. Enteritidis and S. Typhimurium. Microorganisms. https://doi.org/10.3390/microorganisms7040100

    Article  PubMed  PubMed Central  Google Scholar 

  18. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201(7):1096–1104. https://doi.org/10.1086/651135

    Article  PubMed  CAS  Google Scholar 

  19. Harper DR, Enright MC (2011) Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 111(1):1–7. https://doi.org/10.1111/j.1365-2672.2011.05003.x

    Article  PubMed  CAS  Google Scholar 

  20. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42(5):2074–2079. https://doi.org/10.1128/jcm.42.5.2074-2079.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Forozsh FM, Irajian G, Moslehi TZ, Fazeli H, Salehi M, Rezania S (2012) Drug resistance pattern of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients at Isfahan AL Zahra hospital, Iran (2009–2010). Iran J Microbiol 4(2):94–97

    PubMed  PubMed Central  Google Scholar 

  22. Lu L, Cai L, Jiao N, Zhang R (2017) Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J 14(1):104. https://doi.org/10.1186/s12985-017-0773-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ackermann HW (2009) Basic phage electron microscopy. Methods Mol Biol 501:113–126. https://doi.org/10.1007/978-1-60327-164-6_12

    Article  PubMed  CAS  Google Scholar 

  24. Zhou W, Feng Y, Zong Z (2018) Two new lytic bacteriophages of the myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:850. https://doi.org/10.3389/fmicb.2018.00850

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han Y, Wang M, Liu Q, Liu Y, Wang Q, Duan X, Liu L, Jiang Y, Shao H, Guo C (2019) Genome analysis of two novel lytic vibrio maritimus phages isolated from the Coastal Surface Seawater of Qingdao China. Curr Microbiol 76(10):1225–1233. https://doi.org/10.1007/s00284-019-01736-2

    Article  PubMed  CAS  Google Scholar 

  26. Liu Z, Wang M, Meng X, Li Y, Wang D, Jiang Y, Shao H, Zhang Y (2017) Isolation and genome sequencing of a novel pseudoalteromonas phage PH1. Curr Microbiol 74(2):212–218. https://doi.org/10.1007/s00284-016-1175-9

    Article  PubMed  CAS  Google Scholar 

  27. Yang Z, Liu X, Shi Y, Yin S, Shen W, Chen J, Chen Y, Chen Y, You B, Gong Y, Luo X, Zhang C, Yuan Z, Peng Y (2019) Characterization and genome annotation of a newly detected bacteriophage infecting multidrug-resistant Acinetobacter baumannii. Adv Virol 164(6):1527–1533. https://doi.org/10.1007/s00705-019-04213-0

    Article  CAS  Google Scholar 

  28. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    Article  CAS  Google Scholar 

  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  30. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  Google Scholar 

  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  32. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12:402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  Google Scholar 

  33. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhao Y, Wang K, Jiao N, Chen F (2009) Genome sequences of two novel phages infecting marine roseobacters. Environ Microbiol 11(8):2055–2064. https://doi.org/10.1111/j.1462-2920.2009.01927.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yang M, Du C, Gong P, Xia F, Sun C, Feng X, Lei L, Song J, Zhang L, Wang B, Xiao F, Yan X, Cui Z, Li X, Gu J, Han W (2015) Therapeutic effect of the YH6 phage in a murine hemorrhagic pneumonia model. Res Microbiol 166(8):633–643. https://doi.org/10.1016/j.resmic.2015.07.008

    Article  PubMed  CAS  Google Scholar 

  36. Nechaev S, Severinov K (2003) Bacteriophage-induced modifications of host RNA polymerase. Annu Rev Microbiol 57:301–322. https://doi.org/10.1146/annurev.micro.57.030502.090942

    Article  PubMed  CAS  Google Scholar 

  37. Morozova V, Babkin I, Kozlova Y, Baykov I, Bokovaya O, Tikunov A, Ushakova T, Bardasheva A, Ryabchikova E, Zelentsova E, Tikunova N (2019) Isolation and characterization of a novel Klebsiella pneumoniae N4-like bacteriophage KP8. Viruses. https://doi.org/10.3390/v11121115

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lenneman BR, Rothman-Denes LB (2015) Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Biomolecules 5(2):647–667. https://doi.org/10.3390/biom5020647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dyson ZA, Tucci J, Seviour RJ, Petrovski S (2016) Isolation and characterization of bacteriophage SPI1, which infects the activated-sludge-foaming bacterium Skermania piniformis. Adv Virol 161(1):149–158. https://doi.org/10.1007/s00705-015-2631-8

    Article  CAS  Google Scholar 

  40. Daniel A, Bonnen PE, Fischetti VA (2007) First complete genome sequence of two Staphylococcus epidermidis bacteriophages. J Bacteriol 189(5):2086–2100. https://doi.org/10.1128/JB.01637-06

    Article  PubMed  CAS  Google Scholar 

  41. Delisle AL, Barcak GJ, Guo M (2006) Isolation and expression of the lysis genes of Actinomyces naeslundii phage Av-1. Appl Environ Microbiol 72(2):1110–1117. https://doi.org/10.1128/AEM.72.2.1110-1117.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the Donkey Industry Innovation Team Program of Modern Agricultural Technology System from Shandong Province, China (SDAIT-27). The authors would like to thank Jia Wang, Peng Song, and Wenshi Zhong for their help during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiying Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Zhao, F., Sun, H. et al. Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus. Curr Microbiol 77, 2465–2474 (2020). https://doi.org/10.1007/s00284-020-02011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02011-5

Navigation