Skip to main content
Log in

Exact zero transmission during the Fano resonance phenomenon in non-symmetric waveguides

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We investigate a time-harmonic wave problem in a waveguide. We work at low frequency so that only one mode can propagate. It is known that the scattering matrix exhibits a rapid variation for real frequencies in a vicinity of a complex resonance located close to the real axis. This is the so-called Fano resonance phenomenon. And when the geometry presents certain properties of symmetry, there are two different real frequencies such that we have either \(R=0\) or \(T=0\), where R and T denote the reflection and transmission coefficients. In this work, we prove that without the assumption of symmetry of the geometry, quite surprisingly, there is always one real frequency for which we have \(T=0\). In this situation, all the energy sent in the waveguide is backscattered. However in general, we do not have \(R=0\) in the process. We provide numerical results to illustrate our theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abeynanda, G.S., Shipman, S.P.: Dynamic resonance in the high-Q and near-monochromatic regime. In: MMET, IEEE, pp. 102–107 (2016)

  2. Aslanyan, A., Parnovski, L., Vassiliev, D.: Complex resonances in acoustic waveguides. Q. J. Mech. Appl. Math. 53(3), 429–447 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bécache, E., Bonnet-Ben Dhia, A.-S., Legendre, G.: Perfectly matched layers for the convected helmholtz equation. SIAM J. Numer. Anal. 42(1), 409–433 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bonnet-Ben Dhia, A.-S., Chesnel, L., Pagneux, V.: Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem. Proc. R. Soc. A 474(2213), 20180050 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Cattapan, G., Lotti, P.: Fano resonances in stubbed quantum waveguides with impurities. Eur. Phys. J. B 60(1), 51–60 (2007)

    Google Scholar 

  7. Chesnel, L., Nazarov, S.A.: Non reflection and perfect reflection via Fano resonance in waveguides. Commun. Math. Sci. 16(7), 1779–1800 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Chesnel, L., Nazarov, S.A., Pagneux, V.: Invisibility and perfect reflectivity in waveguides with finite length branches. SIAM J. Appl. Math. 78(4), 2176–2199 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chesnel, L., Pagneux, V.: Simple examples of perfectly invisible and trapped modes in waveguides. Q. J. Mech. Appl. Math. 71(3), 297–315 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Chesnel, L., Pagneux, V.: From zero transmission to trapped modes in waveguides. J. Phys. A Math. Theor. 52(16), 165304 (2019)

    MathSciNet  Google Scholar 

  11. Davies, E.B., Parnovski, L.: Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math. 51(3), 477–492 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Duan, Y., Koch, W., Linton, C.M., McIver, M.: Complex resonances and trapped modes in ducted domains. J. Fluid. Mech. 571, 119–147 (2007)

    MathSciNet  MATH  Google Scholar 

  13. El Boudouti, E.H., Mrabti, T., Al-Wahsh, H., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L.: Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. J. Phys. Condens. Matter 20(25), 255212 (2008)

    Google Scholar 

  14. Evans, D.V.: Trapped acoustic modes. IMA J. Appl. Math. 49(1), 45–60 (1992)

    MathSciNet  Google Scholar 

  15. Evans, D.V., Levitin, M., Vassiliev, D.: Existence theorems for trapped modes. J. Fluid. Mech. 261, 21–31 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Fan, S., Joannopoulos, J.D.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65(23), 235112 (2002)

    Google Scholar 

  17. Fan, S., Suh, W., Joannopoulos, J.D.: Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20(3), 569–572 (2003)

    Google Scholar 

  18. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866–1878 (1961)

    MATH  Google Scholar 

  19. Hein, S., Koch, W.: Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid. Mech. 605, 401–428 (2008)

    MATH  Google Scholar 

  20. Hein, S., Koch, W., Nannen, L.: Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. J. Fluid. Mech. 692, 257–287 (2012)

    MATH  Google Scholar 

  21. Hohage, T., Nannen, L.: Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47(2), 972–996 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Kamotskiĭ, I.V., Nazarov, S.A.: An augmented scattering matrix and exponentially decreasing solutions of an elliptic problem in a cylindrical domain. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 264(Mat. Vopr. Teor. Rasprostr. Voln. 29):66–82, 2000. (English transl.: J. Math. Sci. 2002. V. 111, N 4. P. 3657–3666)

  23. Lee, H.-W.: Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys. Rev. Lett. 82(11), 2358 (1999)

    Google Scholar 

  24. Lee, H.-W., Kim, C.S.: Effects of symmetries on single-channel systems: Perfect transmission and reflection. Phys. Rev. B 63(7), 075306 (2001)

    Google Scholar 

  25. Linton, C.M., McIver, P.: Embedded trapped modes in water waves and acoustics. Wave Motion 45(1), 16–29 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Google Scholar 

  27. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82(3), 2257 (2010)

    Google Scholar 

  28. Miroshnichenko, A.E., Malomed, B.A., Kivshar, Y.S.: Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84(1), 012123 (2011)

    Google Scholar 

  29. Nazarov, S.A.: Sufficient conditions on the existence of trapped modes in problems of the linear theory of surface waves. J. Math. Sci. 167(5), 713–725 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Nazarov, S.A.: Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Theor. Math. Phys. 167(2), 606–627 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Nazarov, S.A.: Eigenvalues of the Laplace operator with the Neumann conditions at regular perturbed walls of a waveguide. J. Math. Sci. 172(4), 555–588 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Nazarov, S.A.: Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle. Comput. Math. Math. Phys. 52(3), 448–464 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Nazarov, S.A.: Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide. Funct. Anal. Appl. 47(3), 195–209 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Nazarov, S.A.: Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide. Acoust. Phys. 59(3), 272–280 (2013)

    Google Scholar 

  35. Nazarov, S.A.: Almost standing waves in a periodic waveguide with resonator, and near-threshold eigenvalues. Algebra i Analiz, 28(3):110–160, 2016. (English transl.: Sb. Math. J. 2017. V. 28, N 3. P. 377–410)

  36. Nazarov, S.A.: Enhancement and smoothing of near-threshold Wood anomalies in an acoustic waveguide. Acoust. Phys. 64(5), 535–547 (2018)

    Google Scholar 

  37. Nazarov, S.A., Plamenevskiĭ, B.A.: Selfadjoint elliptic problems: scattering and polarization operators on the edges of the boundary. Algebra i Analiz, 6(4):157–186, 1994. (English transl.: Sb. Math. J. 1995. V. 6, N 4. P. 839–863)

  38. Porto, J.A., Garcia-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83(14), 2845 (1999)

    Google Scholar 

  39. Shao, Z.-A., Porod, W., Lent, C.S.: Transmission resonances and zeros in quantum waveguide systems with attached resonators. Phys. Rev. B 49(11), 7453 (1994)

    Google Scholar 

  40. Shipman, S.P., Tu, H.: Total resonant transmission and reflection by periodic structures. SIAM J. Appl. Math. 72(1), 216–239 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Shipman, S.P., Venakides, S.: Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E 71(2), 026611 (2005)

    Google Scholar 

  42. Shipman, S.P., Welters, A.T.: Resonant electromagnetic scattering in anisotropic layered media. J. Math. Phys. 54(10), 103511 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Ursell, F.: Trapping modes in the theory of surface waves. Proc. Camb. Philos. Soc. 47, 347–358 (1951)

    MathSciNet  MATH  Google Scholar 

  44. Zhukovsky, S.V.: Perfect transmission and highly asymmetric light localization in photonic multilayers. Phys. Rev. A 81(5), 053808 (2010)

    Google Scholar 

  45. Zworski, M.: Resonances in physics and geometry. Not. AMS 46(3), 319–328 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of S.A. Nazarov was supported by the Grant No. 17-11-01003 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Chesnel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnel, L., Nazarov, S.A. Exact zero transmission during the Fano resonance phenomenon in non-symmetric waveguides. Z. Angew. Math. Phys. 71, 82 (2020). https://doi.org/10.1007/s00033-020-01305-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01305-9

Keywords

Mathematics Subject Classification

Navigation