Skip to main content
Log in

Role of Chromatin Remodeling Genes and TETs in the Development of Human Midbrain Dopaminergic Neurons

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Understanding epigenetic regulation in the differentiation and maturation of dopaminergic neurons is critical to improve and develop new medications for Parkinson’s disease (PD). To explore the role of ten-eleven translocation (TETs) family of dioxygenases and chromatin remodeling genes in the development of human midbrain dopaminergic (mDA) neurons, we globally analyze the epigenetic regulation of gene expression in human induced pluripotent stem cells (iPSCs) and iPSCs-derived mDA neurons. During the conversion of iPSCs into neuronal lineages of dopaminergic progenitors and mDA neurons, the expression patterns of epigenetic genes in multiple sets alter significantly. Vitamin C, an activator of TET enzymes, increases hydroxymethylcytosine (5hmC) level along with a higher yield of mDA neurons. Additionally, vitamin C treatment elevates gene expressions of TET2/3 and vitamin C transporters. Importantly, functional arrays indicate that vitamin C can promote neuronal maturation, synaptic activity, and dopamine release. Collectively, our study demonstrates that chromatin remodeling genes and the TET-5hmC pathway, which is regulated by vitamin C, are critical for the vital developmental stages of human mDA neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rose, N. R., & Klose, R. J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta, 1839, 1362–1372. https://doi.org/10.1016/j.bbagrm.2014.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin, R., Mao, S. Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., Zhang, D., Huang, H., Gao, J., Li, Z., Jiao, Y., Li, C., Liu, S., Wu, D., Gu, W., Yang, Y. G., Xu, G. L., & Wang, H. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. Journal of the American Chemical Society, 135, 10396–10403. https://doi.org/10.1021/ja4028346.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, M., Park, Y. K., Kang, T. W., Lee, S. H., Rhee, Y. H., Park, J. L., Kim, H. J., Lee, D., Lee, D., & Kim, S. Y. (2014). Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Human Molecular Genetics, 23, 657–667. https://doi.org/10.1093/hmg/ddt453.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, Y., Xu, C., Kato, A., Tempel, W., Abreu, J. G., Bian, C., Hu, Y., Hu, D., Zhao, B., Cerovina, T., Diao, J., Wu, F., He, H. H., Cui, Q., Clark, E., Ma, C., Barbara, A., Veenstra, G. J., Xu, G., Kaiser, U. B., Liu, X. S., Sugrue, S. P., He, X., Min, J., Kato, Y., & Shi, Y. G. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 151, 1200–1213. https://doi.org/10.1016/j.cell.2012.11.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, R. R., Cui, Q. Y., Murai, K., Lim, Y. C., Smith, Z. D., Jin, S., Ye, P., Rosa, L., Lee, Y. K., Wu, H. P., Liu, W., Xu, Z. M., Yang, L., Ding, Y. Q., Tang, F., Meissner, A., Ding, C., Shi, Y., & Xu, G. L. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13, 237–245. https://doi.org/10.1016/j.stem.2013.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151, 1417–1430. https://doi.org/10.1016/j.cell.2012.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., & Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33, 102–106. https://doi.org/10.1038/nbt.3055.

    Article  CAS  PubMed  Google Scholar 

  8. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324, 930–935. https://doi.org/10.1126/science.1170116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansen, S. N., Tveden-Nyborg, P., & Lykkesfeldt, J. (2014). Does vitamin C deficiency affect cognitive development and function? Nutrients, 6, 3818–3846. https://doi.org/10.3390/nu6093818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kocot, J., Luchowska-Kocot, D., Kielczykowska, M., Musik, I., & Kurzepa, J. (2017). Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients, 9, E659. https://doi.org/10.3390/nu9070659.

    Article  CAS  PubMed  Google Scholar 

  11. Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martinez, J. A., Goyal, P., Mahapatra, S., Tam, A., Laird, D. J., Hirst, M., Rao, A., Lorincz, M. C., & Ramalho-Santos, M. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500, 222–226. https://doi.org/10.1038/nature12362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colquitt, B. M., Allen, W. E., Barnea, G., Lomvardas, S. (2013). Alteration of genic 5-hydroxymethylcytosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proceedings of the National Academy of Sciences of the United States of America, 110, 14682–14687. https://doi.org/10.1073/pnas.1302759110.

  13. Zhu, X., Girardo, D., Govek, E. E., John, K., Mellen, M., Tamayo, P., Mesirov, J. P., & Hatten, M. E. (2016). Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron, 89, 100–112. https://doi.org/10.1016/j.neuron.2015.11.030.

    Article  CAS  PubMed  Google Scholar 

  14. Antunes, C., Sousa, N., Pinto, L., & Marques, C. J. (2019). TET enzymes in neurophysiology and brain function. Neuroscience and Biobehavioral Reviews, 102, 337–344. https://doi.org/10.1016/j.neubiorev.2019.05.006.

    Article  CAS  PubMed  Google Scholar 

  15. van Heesbeen, H. J., Mesman, S., Veenvliet, J. V., & Smidt, M. P. (2013). Epigenetic mechanisms in the development and maintenance of dopaminergic neurons. Development, 140, 1159–1169. https://doi.org/10.1242/dev.089359.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, H., Xu, Z., Zhong, P., Ren, Y., Liang, G., Schilling, H. A., Hu, Z., Zhang, Y., Wang, X., Chen, S., Yan, Z., & Feng, J. (2015). Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nature Communications, 6, 10100. https://doi.org/10.1038/ncomms10100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He, X. B., Kim, M., Kim, S. Y., Yi, S. H., Rhee, Y. H., Kim, T., Lee, E. H., Park, C. H., Dixit, S., Harrison, F. E., & Lee, S. H. (2015). Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells, 33, 1320–1332. https://doi.org/10.1002/stem.1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M. F., Surmeier, D. J., Kordower, J. H., Tabar, V., & Studer, L. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480, 547–551. https://doi.org/10.1038/nature10648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woodard, C. M., Campos, B. A., Kuo, S. H., Nirenberg, M. J., Nestor, M. W., Zimmer, M., Mosharov, E. V., Sulzer, D., Zhou, H., Paull, D., Clark, L., Schadt, E. E., Sardi, S. P., Rubin, L., Eggan, K., Brock, M., Lipnick, S., Rao, M., Chang, S., Li, A., & Noggle, S. A. (2014). iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Reports, 9, 1173–1182. https://doi.org/10.1016/j.celrep.2014.10.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahajani, S., Raina, A., Fokken, C., Kügler, S., Bähr, M. (2019). Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death and Disease, 12, 898. https://doi.org/10.1038/s41419-019-2133-9, 15.

  21. Smidt, M. P., & Burbach, J. P. (2007). How to make a mesodiencephalic dopaminergic neuron. Nature Reviews Neuroscience, 8, 21–32. https://doi.org/10.1038/nrn2039.

    Article  CAS  PubMed  Google Scholar 

  22. Ito, S., D'Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466, 1129–1133. https://doi.org/10.1038/nature09303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., King, J. R., Song, H., & Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 1086–1093. https://doi.org/10.1016/j.neuron.2013.08.032.

    Article  CAS  PubMed  Google Scholar 

  24. Hon, G. C., Song, C. X., Du, T., Jin, F., Selvaraj, S., Lee, A. Y., Yen, C. A., Ye, Z., Mao, S. Q., Wang, B. A., Kuan, S., Edsall, L. E., Zhao, B. S., Xu, G. L., He, C., & Ren, B. (2014). 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Molecular Cell, 56, 286–297. https://doi.org/10.1016/j.molcel.2014.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, Y., Chavez, L., Chang, X., Wang, X., Pastor, W. A., Kang, J., Zepeda-Martinez, J. A., Pape, U. J., Jacobsen, S. E., Peters, B., Rao, A. (2014). Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111, 1361–1366. https://doi.org/10.1073/pnas.1322921111.

  26. Hahn, M. A., Qiu, R., Wu, X., Li, A. X., Zhang, H., Wang, J., Jui, J., Jin, S. G., Jiang, Y., Pfeifer, G. P., & Liu, Q. (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Reports, 3, 291–300. https://doi.org/10.1016/j.celrep.2013.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roessler, R., Smallwood, S. A., Veenvliet, J. V., Pechlivanoglou, P., Peng, S. P., Chakrabarty, K., Groot-Koerkamp, M. J., Pasterkamp, R. J., Wesseling, E., Kelsey, G., Boddeke, E., Smidt, M. P., & Copray, S. (2014). Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Reports, 2, 520–533. https://doi.org/10.1016/j.stemcr.2014.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are particularly grateful for the following grant support: National Natural Science Foundation of China (Grant no. 81572495, 81773264 and 81573239).

Author information

Authors and Affiliations

Authors

Contributions

L. X., G. H. and G. J. designed, performed most of the experiments, and wrote the manuscript. L. X. and G. H. performed mDA neuronal differentiation, qPCR, immunofluorescence, and biochemistry assays. W. S. and C. G. performed MEA analyses, dot blotting, and bioinformatics data processing. N. C., R. C., X. J., and H. L. provided reagents and critical comments. G. J. supervised the project and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Gaofeng Jiang.

Ethics declarations

Conflict of Interest

The authors indicate no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li Xiang and Guobin Huang are Co-first authors

Electronic supplementary material

ESM 1

(DOC 3214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Huang, G., Shu, W. et al. Role of Chromatin Remodeling Genes and TETs in the Development of Human Midbrain Dopaminergic Neurons. Stem Cell Rev and Rep 16, 718–729 (2020). https://doi.org/10.1007/s12015-020-09972-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09972-x

Keywords

Navigation