Skip to main content
Log in

Kondo resonance assisted thermoelectric transport through strongly correlated quantum dots

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations of motion approach. The thermocurrent versus gate voltage shows a distinct sawtooth line-shape at high temperatures. In particular, the current changes from positive (hole charge) to negative (particle charge) in the electron number N = 1 region due to the Coulomb blockade effect. However, at low temperatures, where the Kondo effect occurs, the thermocurrent’s charge polarity reverses, along with a significantly enhanced magnitude. As anticipated, the current sign can be analyzed by the occupation difference between particle and hole. Moreover, the characteristic turnover temperature can be further defined at which the influences of the Coulomb blockade and Kondo resonance are in an effective balance. Remarkably, the identified characteristic turnover temperature, as a function of the Coulomb interaction and dot-lead coupling, possessed a much higher value than the Kondo temperature. When a magnetic field is applied, a spin-polarized thermocurrent can be obtained, which could be tested in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Dubi, and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).

    ADS  Google Scholar 

  2. A. Tan, S. Sadat, and P. Reddy, Appl. Phys. Lett. 96, 013110 (2010).

    ADS  Google Scholar 

  3. B. C. Hsu, Y. S. Liu, S. H. Lin, and Y. C. Chen, Phys. Rev. B 83, 041404 (2011), arXiv: 1009.5779.

    ADS  Google Scholar 

  4. F. Domínguez-Adame, M. Martín-González, D. Sánchez, and A. Cantarero, Physica E 113, 213 (2019), arXiv: 1901.03046.

    ADS  Google Scholar 

  5. S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, Phys. Rev. Lett. 119, 036804 (2017).

    ADS  Google Scholar 

  6. B. Dutta, D. Majidi, A. García Corral, P. A. Erdman, S. Florens, T. A. Costi, H. Courtois, and C. B. Winkelmann, Nano Lett. 19, 506 (2019), arXiv: 1811.04219.

    ADS  Google Scholar 

  7. M. A. Sierra, R. López, and J. S. Lim, Phys. Rev. Lett. 121, 096801 (2018), arXiv: 1806.10505.

    ADS  Google Scholar 

  8. S. F. Svensson, E. A. Hoffmann, N. Nakpathomkun, P. M. Wu, H. Q. Xu, H. A. Nilsson, D. Sánchez, V. Kashcheyevs, and H. Linke, New J. Phys. 15, 105011 (2013), arXiv: 1307.0617.

    Google Scholar 

  9. F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006), arXiv: cond-mat/0508093.

    ADS  Google Scholar 

  10. H. L. Edwards, Q. Niu, and A. L. de Lozanne, Appl. Phys. Lett. 63, 1815 (1993).

    ADS  Google Scholar 

  11. M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65, 3123 (1994).

    ADS  Google Scholar 

  12. C. W. J. Beenakker, and A. A. M. Staring, Phys. Rev. B 46, 9667 (1992).

    ADS  Google Scholar 

  13. A. S. Dzurak, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Solid State Commun. 87, 1145 (1993).

    ADS  Google Scholar 

  14. A. A. M. Staring, L. W. Molenkamp, B. W. Alphenaar, H. Houten, O. J. A. Buyk, M. A. A. Mabesoone, C. W. J. Beenakker, and C. T. Foxon, Europhys. Lett. 22, 57 (1993).

    ADS  Google Scholar 

  15. A. V. Andreev, and K. A. Matveev, Phys. Rev. Lett. 86, 280 (2001), arXiv: cond-mat/0002461.

    ADS  Google Scholar 

  16. M. A. Sierra, and D. Sanchez, Phys. Rev. B 90, 115313 (2014), arXiv: 1408.0181.

    ADS  Google Scholar 

  17. R. Scheibner, E. G. Novik, T. Borzenko, M. König, D. Reuter, A. D. Wieck, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 75, 041301 (2007), arXiv: cond-mat/0608193.

    ADS  Google Scholar 

  18. D. Boese, and R. Fazio, Europhys. Lett. 56, 576 (2001), arXiv: cond-mat/0105217.

    ADS  Google Scholar 

  19. M. B. Tagani, and H. R. Soleimani, Int. J. Thermophys. 35, 136 (2014), arXiv: 1206.2007.

    ADS  Google Scholar 

  20. B. Dong, and X. L. Lei, J. Phys.-Condens. Matter 14, 11747 (2002), arXiv: cond-mat/0207251.

    ADS  Google Scholar 

  21. T. A. Costi, and V. Zlatic, Phys. Rev. B 81, 235127 (2010), arXiv: 1004.1519.

    ADS  Google Scholar 

  22. M. A. Sierra, and D. Sánchez, J. Phys.-Conf. Ser. 969, 012144 (2018), arXiv: 1710.01069.

    Google Scholar 

  23. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  24. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    ADS  Google Scholar 

  25. Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70, 2601 (1993), arXiv: cond-mat/9212007.

    ADS  Google Scholar 

  26. T. K. Ng, Phys. Rev. Lett. 76, 487 (1996).

    ADS  Google Scholar 

  27. Y. X. Cheng, W. J. Hou, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, New J. Phys. 17, 033009 (2015), arXiv: 1410.1235.

    ADS  Google Scholar 

  28. A. E. Antipov, Q. Dong, and E. Gull, Phys. Rev. Lett. 116, 036801 (2016), arXiv: 1508.06633.

    ADS  Google Scholar 

  29. T. S. Kim, and D. L. Cox, Phys. Rev. Lett. 75, 1622 (1995), arXiv: cond-mat/9412024.

    ADS  Google Scholar 

  30. D. P. Daroca, P. Roura-Bas, and A. A. Aligia, Phys. Rev. B 97, 165433 (2018), arXiv: 1804.06694.

    ADS  Google Scholar 

  31. J. Azema, A. M. Daré, S. Schäfer, and P. Lombardo, Phys. Rev. B 86, 075303 (2012), arXiv: 1204.5360.

    ADS  Google Scholar 

  32. L. Z. Ye, D. Hou, R. Wang, D. Cao, X. Zheng, and Y. J. Yan, Phys. Rev. B 90, 165116 (2014), arXiv: 1306.4946.

    ADS  Google Scholar 

  33. T. S. Kim, and S. Hershfield, Phys. Rev. Lett. 88, 136601 (2002), arXiv: cond-mat/0110261.

    ADS  Google Scholar 

  34. R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005), arXiv: cond-mat/0410671.

    ADS  Google Scholar 

  35. T. S. Kim, and S. Hershfield, Phys. Rev. B 67, 165313 (2003), arXiv: cond-mat/0211554.

    ADS  Google Scholar 

  36. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature 423, 425 (2003), arXiv: cond-mat/0406125.

    ADS  Google Scholar 

  37. A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijnse, Phys. Rev. Lett. 121, 206801 (2018), arXiv: 1807.07807.

    ADS  Google Scholar 

  38. A. Dorda, M. Ganahl, S. Andergassen, W. von der Linden, and E. Arrigoni, Phys. Rev. B 94, 245125 (2016), arXiv: 1608.05714.

    ADS  Google Scholar 

  39. D. B. Karki, and M. N. Kiselev, Phys. Rev. B 96, 121403 (2017), arXiv: 1703.05525.

    ADS  Google Scholar 

  40. Y. J. Yan, J. Chem. Phys. 140, 054105 (2014).

    ADS  Google Scholar 

  41. J. Jin, S. Wang, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 234108 (2015).

    ADS  Google Scholar 

  42. J. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008), arXiv: 0710.5367.

    ADS  Google Scholar 

  43. Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Phys. Rev. Lett. 109, 266403 (2012), arXiv: 1207.6359.

    ADS  Google Scholar 

  44. L. Z. Ye, X. Wang, D. Hou, R. X. Xu, X. Zheng, and Y. J. Yan, WIREs Comput. Mol. Sci. 6, 608 (2016).

    Google Scholar 

  45. R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, Phys. Rev. B 92, 085430 (2015), arXiv: 1505.01283.

    ADS  Google Scholar 

  46. A. Erpenbeck, C. Hertlein, C. Schinabeck, and M. Thoss, J. Chem. Phys. 149, 064106 (2018), arXiv: 1805.10161.

    ADS  Google Scholar 

  47. Z. H. Li, Y. X. Cheng, J. H. Wei, X. Zheng, and Y. J. Yan, Phys. Rev. B 98, 115133 (2018).

    ADS  Google Scholar 

  48. Y. X. Cheng, Y. D. Wang, J. H. Wei, Z. G. Zhu, and Y. J. Yan, Phys. Rev. B 95, 155417 (2017), arXiv: 1701.06369.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianHua Wei or HongGang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, Z., Wei, J. et al. Kondo resonance assisted thermoelectric transport through strongly correlated quantum dots. Sci. China Phys. Mech. Astron. 63, 297811 (2020). https://doi.org/10.1007/s11433-019-1526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1526-3

Keywords

Navigation