Skip to main content

Advertisement

Log in

Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABA, the most abundant inhibitory neurotransmitter in the brain, is closely linked with sleep and wakefulness. As the largest area input to the ventral pallidum (VP), the nucleus accumbens (NAc) has been confirmed to play a pivotal role in promoting non-rapid eye movement (NREM) sleep through inhibitory projections from NAc adenosine A2A receptor-expressing neurons to VP GABAergic neurons which mostly express GABAA receptors. Although these studies demonstrate the possible role of VP GABAergic neurons in sleep–wake regulation, whether and how its modulate sleep–wake cycle is not completely clear. In our study, pharmacological manipulations were implemented in freely moving rats and then the EEG and the EMG were recorded to monitor the sleep–wake states. We found that microinjection of muscimol, a GABAA receptor agonist, into the VP increased NREM sleep in both light and dark period. Microinjection of bicuculline, a GABAA receptor antagonist, into the VP increased wakefulness in the light period. Collectively, our data identify the important role of VP GABAA receptor-expressing neurons in NREM sleep of rats which may help improve the understanding of the pathological sleep disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70. https://doi.org/10.1016/j.pneurobio.2015.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  2. McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, Yanagawa Y, McCarley RW, Brown RE (2013) Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol 521(6):1225–1250. https://doi.org/10.1002/cne.23290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heimer L, Switzer R, Hoesen GW (1982) Ventral striatum and ventral pallidum: components of the motor system? Trends Neurosci 5:83–87. https://doi.org/10.1016/0166-2236(82)90037-6

    Article  Google Scholar 

  4. Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167. https://doi.org/10.1016/j.bbr.2008.09.038

    Article  PubMed  Google Scholar 

  5. Ottenheimer D, Richard JM, Janak PH (2018) Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nat commun 9(1):4350. https://doi.org/10.1038/s41467-018-06849-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ollmann T, Peczely L, Laszlo K, Kovacs A, Galosi R, Berente E, Karadi Z, Lenard L (2015) Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav Brain Res 278:470–475. https://doi.org/10.1016/j.bbr.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  7. Saga Y, Richard A, Sgambato-Faure V, Hoshi E, Tobler PN, Tremblay L (2016) Ventral pallidum encodes contextual information and controls aversive behaviors. Cerebr Cortex 27(4):2528–2543. https://doi.org/10.1093/cercor/bhw107

    Article  Google Scholar 

  8. Pardo-Garcia TR, Garcia-Keller C, Penaloza T, Richie CT, Pickel J, Hope BT, Harvey BK, Kalivas PW, Heinsbroek JA (2019) Ventral pallidum is the primary target for accumbens D1 projections driving cocaine seeking. J Neurosci 39(11):2041–2051. https://doi.org/10.1523/jneurosci.2822-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Root DH, Ma S, Barker DJ, Megehee L, Striano BM, Ralston CM, Fabbricatore AT, West MO (2013) Differential roles of ventral pallidum subregions during cocaine self-administration behaviors. J Comp Neurol 521(3):558–588. https://doi.org/10.1002/cne.23191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lénárd L, Ollmann T, László K, Kovács A, Gálosi R, Kállai V, Attila T, Kertes E, Zagoracz O, Karádi Z, Péczely L (2017) Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 321:99–105. https://doi.org/10.1016/j.bbr.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  11. Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302(3):437–446. https://doi.org/10.1002/cne.903020302

    Article  CAS  PubMed  Google Scholar 

  12. Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218(5):1133–1157. https://doi.org/10.1007/s00429-012-0451-0

    Article  PubMed  Google Scholar 

  13. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28(22):5671–5685. https://doi.org/10.1523/jneurosci.1039-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo Y-J, Li Y-D, Wang L, Yang S-R, Yuan X-S, Wang J, Cherasse Y, Lazarus M, Chen J-F, Qu W-M, Huang Z-L (2018) Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 9(1):1576. https://doi.org/10.1038/s41467-018-03889-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, Port RG, Sink KS, Bunce JG, Chrobak JJ, Salamone JD (2008) Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci 28(36):9037–9046. https://doi.org/10.1523/jneurosci.1525-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35(1):27–47. https://doi.org/10.1038/npp.2009.93

    Article  PubMed  Google Scholar 

  17. Chang SE, Todd TP, Smith KS (2018) Paradoxical accentuation of motivation following accumbens-pallidum disconnection. Neurobiol Learn Mem 149:39–45. https://doi.org/10.1016/j.nlm.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744. https://doi.org/10.1038/ncomms9744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang W-C, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18(11):1641–1647. https://doi.org/10.1038/nn.4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu MH, Vetrivelan R, Fuller PM, Lu J (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507. https://doi.org/10.1111/j.1460-9568.2009.07062.x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oishi Y, Xu Q, Wang L, Zhang B-J, Takahashi K, Takata Y, Luo Y-J, Cherasse Y, Schiffmann SN, de Kerchove DA, Urade Y, Qu W-M, Huang Z-L, Lazarus M (2017) Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 8(1):734. https://doi.org/10.1038/s41467-017-00781-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valencia Garcia S, Fort P (2018) Nucleus Accumbens, a new sleep-regulating area through the integration of motivational stimuli. Acta Pharmacol Sin 39(2):165–166. https://doi.org/10.1038/aps.2017.168

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  24. Chouvet G, Odet P, Valatx JL, Pujol JF (1980) An automatic sleep classifier for laboratory rodents. Wak Sleep 4(1):9–31

    CAS  Google Scholar 

  25. Gradwohl G, Berdugo-Boura N, Segev Y, Tarasiuk A (2015) Sleep/wake dynamics changes during maturation in rats. PLoS ONE 10(4):e0125509. https://doi.org/10.1371/journal.pone.0125509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swift KM, Keus K, Echeverria CG, Cabrera Y, Jimenez J, Holloway J, Clawson BC, Poe GR (2019) Sex differences within sleep in gonadally-intact rats. Sleep. https://doi.org/10.1093/sleep/zsz289

    Article  Google Scholar 

  27. Chapman MA, Zahm DS (1996) Altered Fos-like immunoreactivity in terminal regions of the mesotelencephalic dopamine system is associated with reappearance of tyrosine hydroxylase immunoreactivity at the sites of focal 6-hydroxydopamine lesions in the nucleus accumbens. Brain Res 736(1–2):270–279. https://doi.org/10.1016/0006-8993(96)00714-7

    Article  CAS  PubMed  Google Scholar 

  28. Minert A, Yatziv S-L, Devor M (2017) Location of the mesopontine neurons responsible for maintenance of anesthetic loss of consciousness. J Neurosci 37(38):9320–9331. https://doi.org/10.1523/jneurosci.0544-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56(1):141–148. https://doi.org/10.1016/j.neuropharm.2008.07.045

    Article  CAS  PubMed  Google Scholar 

  30. Franks NP (2006) Molecular targets underlying general anaesthesia. Br J Pharmacol 147(Suppl 1):S72–81. https://doi.org/10.1038/sj.bjp.0706441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27(3):654–670. https://doi.org/10.1111/j.1460-9568.2008.06029.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Freund TF, Meskenaite V (1992) gamma-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci USA 89(2):738–742. https://doi.org/10.1073/pnas.89.2.738

    Article  CAS  PubMed  Google Scholar 

  33. Zahm DS, Schwartz ZM, Lavezzi HN, Yetnikoff L, Parsley KP (2014) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219(2):511–526. https://doi.org/10.1007/s00429-013-0514-x

    Article  PubMed  Google Scholar 

  34. Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS (2018) Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 223(6):2907–2924. https://doi.org/10.1007/s00429-018-1669-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reichard RA, Parsley KP, Subramanian S, Zahm DS (2019) Dissociable effects of dopamine D1 and D2 receptors on compulsive ingestion and pivoting movements elicited by disinhibiting the ventral pallidum. Brain Struct Funct 224(5):1925–1932. https://doi.org/10.1007/s00429-019-01879-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364(2):340–362. https://doi.org/10.1002/(SICI)1096-9861(19960108)364:2<340::AID-CNE11>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  37. Tripathi A, Prensa L, Cebrian C, Mengual E (2010) Axonal branching patterns of nucleus accumbens neurons in the rat. J Comp Neurol 518(22):4649–4673. https://doi.org/10.1002/cne.22484

    Article  PubMed  Google Scholar 

  38. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31(27):10067–10075. https://doi.org/10.1523/jneurosci.6730-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18(9):1230–1232. https://doi.org/10.1038/nn.4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366. https://doi.org/10.1038/nn.4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oishi Y, Suzuki Y, Takahashi K, Yonezawa T, Kanda T, Takata Y, Cherasse Y, Lazarus M (2017) Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct Funct 222(6):2907–2915. https://doi.org/10.1007/s00429-017-1365-7

    Article  CAS  PubMed  Google Scholar 

  42. Rye DB (2004) The two faces of Eve: dopamine's modulation of wakefulness and sleep. Neurology 63(8 Suppl 3):S2–7. https://doi.org/10.1212/wnl.63.8_suppl_3.s2

    Article  PubMed  Google Scholar 

  43. Fifel K, Meijer JH, Deboer T (2018) Circadian and homeostatic modulation of multi-unit activity in midbrain dopaminergic structures. Sci Rep 8(1):7765. https://doi.org/10.1038/s41598-018-25770-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81771819), National key research and development plan of China (Grant No. 2017YFC0108803), Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (Project No. cxpy2017048), the Fundamental Research Funds for the Central Universities (Projects No. 2042017kf0284 and 2042018kf1038) and Wuhan Municipal Science and Technology Project (Project No. 2016060605100525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Y., Yang, B. et al. Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats. Neurochem Res 45, 1791–1801 (2020). https://doi.org/10.1007/s11064-020-03040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03040-z

Keywords

Navigation