Skip to main content
Log in

The use of titanium oxide/polyethylene glycol nanocomposite in sorption of 134Cs and 60Co radionuclides from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Titanium dioxide/polyethylene glycol (TiO2/PEG PNC)-nanocomposite was prepared using the wet chemical method. Physico-chemical characterization of TiO2/PEG PNC is studied by TEM, FTIR, XRD, DTA-TGA, particle size distribution, and pore size analysis. TiO2/PEG PNC used for sorption of 134Cs and 60Co radionuclides. The TiO2/PEG PNC sorption monolayer capacities towards 134Cs and 60Co radionuclides at pH 5 and 25 °C is numerically equal to 163.28 ± 10.98, and 330.16 ± 41.60 mg g−1, respectively. The kinetic of the sorption reaction is applicable with a pseudo-second-order model. The sorption reaction is favorable and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hengleir A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861. https://doi.org/10.1021/cr00098a010

    Article  Google Scholar 

  2. Khin MM, Sreekumaran Nair A, Jagadeesh Babu V, Murugan R, Ramakrishnam S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. https://doi.org/10.1039/C2EE21818F

    Article  CAS  Google Scholar 

  3. Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800. https://doi.org/10.1021/ar600035e

    Article  CAS  PubMed  Google Scholar 

  4. Liang P, Qin Y, Hu B, Li C, Peng T, Jiang Z (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368:638–640. https://doi.org/10.1007/s002160000546

    Article  CAS  PubMed  Google Scholar 

  5. Liang P, Hu B, Jiang Z, Qin Y, Peng T (2001) Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. J Anal Atom Spectrom 16:863–866. https://doi.org/10.1039/b104050m

    Article  CAS  Google Scholar 

  6. Pan B, Pan B, Zhang W, Lv L, Zhang Q, Zheng S (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29. https://doi.org/10.1016/j.cej.2009.02.036

    Article  CAS  Google Scholar 

  7. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  8. Zainab M, Jeefferie AR, Masrom AK, Rosli ZM (2012) Effect of PEG molecular weight on the TiO2 particle structure and TiO2 thin films properties. Adv Mater Res 364:76–80. https://doi.org/10.4028/www.scientific.net/AMR.364.76

    Article  CAS  Google Scholar 

  9. Santos ÁA, Acevedo-Peña P, Córdoba EM (2012) Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quim Nova 35:1931–1935. https://doi.org/10.1590/S0100-40422012001000008

    Article  Google Scholar 

  10. Wang S-H, Wang K-H, Dai Y-M, Jehng J-M (2013) Water effect on the surface morphology of TiO2 thin film modified by polyethylene glycol. Appl Surf Sci 264:470–475. https://doi.org/10.1016/j.apsusc.2012.10.046

    Article  CAS  Google Scholar 

  11. Chang H, Jo EH, Jang HD, Kim TO (2013) Synthesis of PEG-modified TiO2–InVO4 nanoparticles via combustion method and photocatalytic degradation of methylene blue. Mater Lett 92:202–205. https://doi.org/10.1016/j.matlet.2012.11.006

    Article  CAS  Google Scholar 

  12. Trapalis C, Keivanidis CP, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M (2003) TiO2 (Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 431:186–190. https://doi.org/10.1016/S0040-6090(03)00331-6

    Article  CAS  Google Scholar 

  13. Ngwenya N, Chirwa EMN (2010) Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria Miner. Miner Eng 23:463–470. https://doi.org/10.1016/j.mineng.2009.11.006

    Article  CAS  Google Scholar 

  14. Ma B, Oh S, Shin WS, Choi S-J (2011) Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination https://doi.org/10.1016/j.desal.2011.03.072

    Article  Google Scholar 

  15. El-Zakla T, Yakout SM, Rizk MA, Lasheen YF, Gad HMH (2011) Removal of cobalt-60 and caesium-134 ions from contaminated solutions by sorption using activated carbon. Adsorpt Sci Technol J. 29(3):331–344. https://doi.org/10.1260/0263-6174.29.3.331

    Article  CAS  Google Scholar 

  16. Horyna J, Dlouhy Z (1988) A study on the sorption properties of selected clays. Jaderna Energie 34(8):300–302

    CAS  Google Scholar 

  17. Aksoyoglu S (1990) Cesium sorption on mylonite. J Radioanal Nucl Chem Art 140(2):301–313. https://doi.org/10.1007/BF02039502

    Article  CAS  Google Scholar 

  18. El-Dessouky MM (1990) Radioactive decontamination of drinking water and treatment of low level waste using some local natural materials. J Environ Sci 1:145–153

    Google Scholar 

  19. Abou-Jamous JKh (1992) Radioactive waste treatment using natural syrian bentonite. J Radioanal Nucl Chem Art 162(2):325–338. https://doi.org/10.1007/BF02035393

    Article  CAS  Google Scholar 

  20. El-Naggar IM, El-Absy MA, Abdel Hamid MM, Aly HF (1993) Sorption behaviour of uranium and thorium on cryptomelane-type hydrous manganese dioxide from aqueous solution. Solvent Extr Ion Exch 11(3):521–540. https://doi.org/10.1080/07366299308918171

    Article  CAS  Google Scholar 

  21. Dandautiya Rahul, Singh Ajit Pratap, Kundu Sanghamitra (2018) Impact assessment of fly ash on ground water quality: an experimental study using batch leaching tests. Waste Manag Res J. 36(7):624–634. https://doi.org/10.1177/0734242X18775484

    Article  CAS  Google Scholar 

  22. Spence RD, Gilliam TM, Osborne SC, Francis CL, Trotter DR (1993) Evaluation of dry-solids blend material source for grouts containing 106-AN waste: final report. ORNL, TN (U.S.), Funding Organization: USDOE, Washington, DC (U.S), 267 p, Sep. https://doi.org/10.2172/10184762

  23. ElRahman GA (2000) Immobilization studies of certain radioactive waste elements in ceramic or glass matices. M.Sc.thesis, Chemistry Department, Faculty of Science, Cairo University

  24. Kang H, Li G (2011) Preparation and study of polyethylene glycol (PEG)/titanium dioxide (TiO2) phase change materials. Adv Mater Res 284–286:214–218. https://doi.org/10.4028/www.scientific.net/AMR.284-286.214

    Article  CAS  Google Scholar 

  25. El-gammal B, Shady SA (2006) Chromatographic separation of sodium, cobalt and europium on the particles of zirconium molybdate and zirconium silicate ion exchangers. Coll Surf A: Physicochem Eng Asp 287:132–138. https://doi.org/10.1016/j.colsurfa.2006.02.068

    Article  CAS  Google Scholar 

  26. Behnam MA, Emami F, Sobhani Z, Dehghanian AR (2018) The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran J Basic Med Sci 21(11):1133–1139. https://doi.org/10.22038/IJBMS.2018.30284.7304

    Article  PubMed  PubMed Central  Google Scholar 

  27. Motzkus C, Macé T, Vaslin-Reimann S, Ausset P, Maillé M (2013) Characterization of manufactured TiO2 nanoparticles. Nanosafe 2012: international conferences on safe production and use of nanomaterials. IOP Publ J Phy Conf 429:012012. https://doi.org/10.1088/1742-6596/429/1/012012

    Article  CAS  Google Scholar 

  28. Yu K, Zhao J, Zhao X, Ding X, Zhu Y, Wang Z (2005) Self-assembly and oriented organization of shape controlled nanocrystalline TiO2. Mater Lett 59:2676–2679. https://doi.org/10.1016/j.matlet.2005.04.017

    Article  CAS  Google Scholar 

  29. Shaojing Bu, Jin Z, Liu X, Yang L, Cheng Z (2004) Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Mater Chem Phys 88:273–279. https://doi.org/10.1016/j.matchemphys.2004.03.033

    Article  CAS  Google Scholar 

  30. Fathima B, John M, Sharfudeen AF, Latheef A, Ambrose RV (2017) Synthesis and characterization of TiO2 nanoparticles and investigation of antimicrobial activities against human pathogens. J Pharm Sci Res 9(9):1604–1608

    Google Scholar 

  31. León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA (2017) FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. J Appl Sci 7:49. https://doi.org/10.3390/app7010049

    Article  CAS  Google Scholar 

  32. Shi Q, Yua J, Liu T (2011) Preparation and performance of polyethylene glycol/titanium dioxide phase change materials. Adv Mater Res 183(185):2082–2085. https://doi.org/10.4028/www.scientific.net/AMR.183-185.2082

    Article  CAS  Google Scholar 

  33. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. J Sci Total Environ 366:409–426. https://doi.org/10.1016/j.scitotenv.2005.10.001

    Article  CAS  Google Scholar 

  34. Puigdomenech I (2013) Make equilibrium diagrams using sophisticated algorithms (MEDUSA). Inorganic Chemistry. Royal Institute of Technology, Stockholm Sweden. https://www.kemi.kth.se/medusa; https://sites.google.com/site/chemdiagr/

  35. Dakroury GA, Abo-Zahra SF, Hassan HS, Fathy NA (2019) Utilization of silica-chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. J Radioanal Nuclear Chem. https://doi.org/10.1007/s10967-019-06951-6

    Article  Google Scholar 

  36. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324. https://doi.org/10.1007/s1783-009-0030-7

    Article  CAS  Google Scholar 

  37. Mohammadi M, Ameri Shahrabi MJ, Sedighi M (2012) Comparative study of linearized and non-linearized modified Langmuir isotherm models on adsorption of asphaltene onto mineral surfaces. Surf Eng Appl Electrochem 48:234–243. https://doi.org/10.3103/S1068375512030088

    Article  Google Scholar 

  38. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  39. Sharma M, Choudhury D, Hazra S, Basu S (2017) Effective removal of metal ions from aqueous solution by mesoporous MnO2 and TiO2 monoliths: kinetic and equilibrium modeling. J Alloys and Comp 720:221–229. https://doi.org/10.1016/j.jallcom.2017.05.260

    Article  CAS  Google Scholar 

  40. KarolinaWieszczyck KF, Wojciechowska I, Aksamitowski P (2020) Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions. Sep Purif Technol 236:116313. https://doi.org/10.1016/j.seppur.2019.116313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dakroury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakroury, G.A., Abo-Zahra, S.F. The use of titanium oxide/polyethylene glycol nanocomposite in sorption of 134Cs and 60Co radionuclides from aqueous solutions. J Radioanal Nucl Chem 324, 1351–1364 (2020). https://doi.org/10.1007/s10967-020-07167-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07167-9

Keywords

Navigation